327 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			FortranFixed
		
	
	
	
	
	
		
		
			
		
	
	
			327 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			FortranFixed
		
	
	
	
	
	
|   | *> \brief \b SLARFT
 | ||
|  | *
 | ||
|  | *  =========== DOCUMENTATION ===========
 | ||
|  | *
 | ||
|  | * Online html documentation available at 
 | ||
|  | *            http://www.netlib.org/lapack/explore-html/ 
 | ||
|  | *
 | ||
|  | *> \htmlonly
 | ||
|  | *> Download SLARFT + dependencies 
 | ||
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f"> 
 | ||
|  | *> [TGZ]</a> 
 | ||
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f"> 
 | ||
|  | *> [ZIP]</a> 
 | ||
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f"> 
 | ||
|  | *> [TXT]</a>
 | ||
|  | *> \endhtmlonly 
 | ||
|  | *
 | ||
|  | *  Definition:
 | ||
|  | *  ===========
 | ||
|  | *
 | ||
|  | *       SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | ||
|  | * 
 | ||
|  | *       .. Scalar Arguments ..
 | ||
|  | *       CHARACTER          DIRECT, STOREV
 | ||
|  | *       INTEGER            K, LDT, LDV, N
 | ||
|  | *       ..
 | ||
|  | *       .. Array Arguments ..
 | ||
|  | *       REAL               T( LDT, * ), TAU( * ), V( LDV, * )
 | ||
|  | *       ..
 | ||
|  | *  
 | ||
|  | *
 | ||
|  | *> \par Purpose:
 | ||
|  | *  =============
 | ||
|  | *>
 | ||
|  | *> \verbatim
 | ||
|  | *>
 | ||
|  | *> SLARFT forms the triangular factor T of a real block reflector H
 | ||
|  | *> of order n, which is defined as a product of k elementary reflectors.
 | ||
|  | *>
 | ||
|  | *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
 | ||
|  | *>
 | ||
|  | *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
 | ||
|  | *>
 | ||
|  | *> If STOREV = 'C', the vector which defines the elementary reflector
 | ||
|  | *> H(i) is stored in the i-th column of the array V, and
 | ||
|  | *>
 | ||
|  | *>    H  =  I - V * T * V**T
 | ||
|  | *>
 | ||
|  | *> If STOREV = 'R', the vector which defines the elementary reflector
 | ||
|  | *> H(i) is stored in the i-th row of the array V, and
 | ||
|  | *>
 | ||
|  | *>    H  =  I - V**T * T * V
 | ||
|  | *> \endverbatim
 | ||
|  | *
 | ||
|  | *  Arguments:
 | ||
|  | *  ==========
 | ||
|  | *
 | ||
|  | *> \param[in] DIRECT
 | ||
|  | *> \verbatim
 | ||
|  | *>          DIRECT is CHARACTER*1
 | ||
|  | *>          Specifies the order in which the elementary reflectors are
 | ||
|  | *>          multiplied to form the block reflector:
 | ||
|  | *>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
 | ||
|  | *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] STOREV
 | ||
|  | *> \verbatim
 | ||
|  | *>          STOREV is CHARACTER*1
 | ||
|  | *>          Specifies how the vectors which define the elementary
 | ||
|  | *>          reflectors are stored (see also Further Details):
 | ||
|  | *>          = 'C': columnwise
 | ||
|  | *>          = 'R': rowwise
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] N
 | ||
|  | *> \verbatim
 | ||
|  | *>          N is INTEGER
 | ||
|  | *>          The order of the block reflector H. N >= 0.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] K
 | ||
|  | *> \verbatim
 | ||
|  | *>          K is INTEGER
 | ||
|  | *>          The order of the triangular factor T (= the number of
 | ||
|  | *>          elementary reflectors). K >= 1.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] V
 | ||
|  | *> \verbatim
 | ||
|  | *>          V is REAL array, dimension
 | ||
|  | *>                               (LDV,K) if STOREV = 'C'
 | ||
|  | *>                               (LDV,N) if STOREV = 'R'
 | ||
|  | *>          The matrix V. See further details.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] LDV
 | ||
|  | *> \verbatim
 | ||
|  | *>          LDV is INTEGER
 | ||
|  | *>          The leading dimension of the array V.
 | ||
|  | *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] TAU
 | ||
|  | *> \verbatim
 | ||
|  | *>          TAU is REAL array, dimension (K)
 | ||
|  | *>          TAU(i) must contain the scalar factor of the elementary
 | ||
|  | *>          reflector H(i).
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[out] T
 | ||
|  | *> \verbatim
 | ||
|  | *>          T is REAL array, dimension (LDT,K)
 | ||
|  | *>          The k by k triangular factor T of the block reflector.
 | ||
|  | *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
 | ||
|  | *>          lower triangular. The rest of the array is not used.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] LDT
 | ||
|  | *> \verbatim
 | ||
|  | *>          LDT is INTEGER
 | ||
|  | *>          The leading dimension of the array T. LDT >= K.
 | ||
|  | *> \endverbatim
 | ||
|  | *
 | ||
|  | *  Authors:
 | ||
|  | *  ========
 | ||
|  | *
 | ||
|  | *> \author Univ. of Tennessee 
 | ||
|  | *> \author Univ. of California Berkeley 
 | ||
|  | *> \author Univ. of Colorado Denver 
 | ||
|  | *> \author NAG Ltd. 
 | ||
|  | *
 | ||
|  | *> \date April 2012
 | ||
|  | *
 | ||
|  | *> \ingroup realOTHERauxiliary
 | ||
|  | *
 | ||
|  | *> \par Further Details:
 | ||
|  | *  =====================
 | ||
|  | *>
 | ||
|  | *> \verbatim
 | ||
|  | *>
 | ||
|  | *>  The shape of the matrix V and the storage of the vectors which define
 | ||
|  | *>  the H(i) is best illustrated by the following example with n = 5 and
 | ||
|  | *>  k = 3. The elements equal to 1 are not stored.
 | ||
|  | *>
 | ||
|  | *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
 | ||
|  | *>
 | ||
|  | *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
 | ||
|  | *>                   ( v1  1    )                     (     1 v2 v2 v2 )
 | ||
|  | *>                   ( v1 v2  1 )                     (        1 v3 v3 )
 | ||
|  | *>                   ( v1 v2 v3 )
 | ||
|  | *>                   ( v1 v2 v3 )
 | ||
|  | *>
 | ||
|  | *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
 | ||
|  | *>
 | ||
|  | *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
 | ||
|  | *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
 | ||
|  | *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
 | ||
|  | *>                   (     1 v3 )
 | ||
|  | *>                   (        1 )
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *  =====================================================================
 | ||
|  |       SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | ||
|  | *
 | ||
|  | *  -- LAPACK auxiliary routine (version 3.4.1) --
 | ||
|  | *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | ||
|  | *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | ||
|  | *     April 2012
 | ||
|  | *
 | ||
|  | *     .. Scalar Arguments ..
 | ||
|  |       CHARACTER          DIRECT, STOREV
 | ||
|  |       INTEGER            K, LDT, LDV, N
 | ||
|  | *     ..
 | ||
|  | *     .. Array Arguments ..
 | ||
|  |       REAL               T( LDT, * ), TAU( * ), V( LDV, * )
 | ||
|  | *     ..
 | ||
|  | *
 | ||
|  | *  =====================================================================
 | ||
|  | *
 | ||
|  | *     .. Parameters ..
 | ||
|  |       REAL               ONE, ZERO
 | ||
|  |       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | ||
|  | *     ..
 | ||
|  | *     .. Local Scalars ..
 | ||
|  |       INTEGER            I, J, PREVLASTV, LASTV
 | ||
|  | *     ..
 | ||
|  | *     .. External Subroutines ..
 | ||
|  |       EXTERNAL           SGEMV, STRMV
 | ||
|  | *     ..
 | ||
|  | *     .. External Functions ..
 | ||
|  |       LOGICAL            LSAME
 | ||
|  |       EXTERNAL           LSAME
 | ||
|  | *     ..
 | ||
|  | *     .. Executable Statements ..
 | ||
|  | *
 | ||
|  | *     Quick return if possible
 | ||
|  | *
 | ||
|  |       IF( N.EQ.0 )
 | ||
|  |      $   RETURN
 | ||
|  | *
 | ||
|  |       IF( LSAME( DIRECT, 'F' ) ) THEN
 | ||
|  |          PREVLASTV = N
 | ||
|  |          DO I = 1, K
 | ||
|  |             PREVLASTV = MAX( I, PREVLASTV )
 | ||
|  |             IF( TAU( I ).EQ.ZERO ) THEN
 | ||
|  | *
 | ||
|  | *              H(i)  =  I
 | ||
|  | *
 | ||
|  |                DO J = 1, I
 | ||
|  |                   T( J, I ) = ZERO
 | ||
|  |                END DO
 | ||
|  |             ELSE
 | ||
|  | *
 | ||
|  | *              general case
 | ||
|  | *
 | ||
|  |                IF( LSAME( STOREV, 'C' ) ) THEN
 | ||
|  | *                 Skip any trailing zeros.
 | ||
|  |                   DO LASTV = N, I+1, -1
 | ||
|  |                      IF( V( LASTV, I ).NE.ZERO ) EXIT
 | ||
|  |                   END DO
 | ||
|  |                   DO J = 1, I-1
 | ||
|  |                      T( J, I ) = -TAU( I ) * V( I , J )
 | ||
|  |                   END DO   
 | ||
|  |                   J = MIN( LASTV, PREVLASTV )
 | ||
|  | *
 | ||
|  | *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
 | ||
|  | *
 | ||
|  |                   CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ),
 | ||
|  |      $                        V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE,
 | ||
|  |      $                        T( 1, I ), 1 )
 | ||
|  |                ELSE
 | ||
|  | *                 Skip any trailing zeros.
 | ||
|  |                   DO LASTV = N, I+1, -1
 | ||
|  |                      IF( V( I, LASTV ).NE.ZERO ) EXIT
 | ||
|  |                   END DO
 | ||
|  |                   DO J = 1, I-1
 | ||
|  |                      T( J, I ) = -TAU( I ) * V( J , I )
 | ||
|  |                   END DO   
 | ||
|  |                   J = MIN( LASTV, PREVLASTV )
 | ||
|  | *
 | ||
|  | *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
 | ||
|  | *
 | ||
|  |                   CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ),
 | ||
|  |      $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV, 
 | ||
|  |      $                        ONE, T( 1, I ), 1 )
 | ||
|  |                END IF
 | ||
|  | *
 | ||
|  | *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
 | ||
|  | *
 | ||
|  |                CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
 | ||
|  |      $                     LDT, T( 1, I ), 1 )
 | ||
|  |                T( I, I ) = TAU( I )
 | ||
|  |                IF( I.GT.1 ) THEN
 | ||
|  |                   PREVLASTV = MAX( PREVLASTV, LASTV )
 | ||
|  |                ELSE
 | ||
|  |                   PREVLASTV = LASTV
 | ||
|  |                END IF
 | ||
|  |             END IF
 | ||
|  |          END DO
 | ||
|  |       ELSE
 | ||
|  |          PREVLASTV = 1
 | ||
|  |          DO I = K, 1, -1
 | ||
|  |             IF( TAU( I ).EQ.ZERO ) THEN
 | ||
|  | *
 | ||
|  | *              H(i)  =  I
 | ||
|  | *
 | ||
|  |                DO J = I, K
 | ||
|  |                   T( J, I ) = ZERO
 | ||
|  |                END DO
 | ||
|  |             ELSE
 | ||
|  | *
 | ||
|  | *              general case
 | ||
|  | *
 | ||
|  |                IF( I.LT.K ) THEN
 | ||
|  |                   IF( LSAME( STOREV, 'C' ) ) THEN
 | ||
|  | *                    Skip any leading zeros.
 | ||
|  |                      DO LASTV = 1, I-1
 | ||
|  |                         IF( V( LASTV, I ).NE.ZERO ) EXIT
 | ||
|  |                      END DO
 | ||
|  |                      DO J = I+1, K
 | ||
|  |                         T( J, I ) = -TAU( I ) * V( N-K+I , J )
 | ||
|  |                      END DO   
 | ||
|  |                      J = MAX( LASTV, PREVLASTV )
 | ||
|  | *
 | ||
|  | *                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
 | ||
|  | *
 | ||
|  |                      CALL SGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ),
 | ||
|  |      $                           V( J, I+1 ), LDV, V( J, I ), 1, ONE,
 | ||
|  |      $                           T( I+1, I ), 1 )
 | ||
|  |                   ELSE
 | ||
|  | *                    Skip any leading zeros.
 | ||
|  |                      DO LASTV = 1, I-1
 | ||
|  |                         IF( V( I, LASTV ).NE.ZERO ) EXIT
 | ||
|  |                      END DO
 | ||
|  |                      DO J = I+1, K
 | ||
|  |                         T( J, I ) = -TAU( I ) * V( J, N-K+I )
 | ||
|  |                      END DO   
 | ||
|  |                      J = MAX( LASTV, PREVLASTV )
 | ||
|  | *
 | ||
|  | *                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
 | ||
|  | *
 | ||
|  |                      CALL SGEMV( 'No transpose', K-I, N-K+I-J,
 | ||
|  |      $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
 | ||
|  |      $                    ONE, T( I+1, I ), 1 )
 | ||
|  |                   END IF
 | ||
|  | *
 | ||
|  | *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
 | ||
|  | *
 | ||
|  |                   CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
 | ||
|  |      $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
 | ||
|  |                   IF( I.GT.1 ) THEN
 | ||
|  |                      PREVLASTV = MIN( PREVLASTV, LASTV )
 | ||
|  |                   ELSE
 | ||
|  |                      PREVLASTV = LASTV
 | ||
|  |                   END IF
 | ||
|  |                END IF
 | ||
|  |                T( I, I ) = TAU( I )
 | ||
|  |             END IF
 | ||
|  |          END DO
 | ||
|  |       END IF
 | ||
|  |       RETURN
 | ||
|  | *
 | ||
|  | *     End of SLARFT
 | ||
|  | *
 | ||
|  |       END
 |