eigen/Eigen/src/Core/MathFunctionsImpl.h

244 lines
8.9 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATHFUNCTIONSIMPL_H
#define EIGEN_MATHFUNCTIONSIMPL_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal Fast reciprocal using Newton-Raphson's method.
Preconditions:
1. The starting guess provided in approx_a_recip must have at least half
the leading mantissa bits in the correct result, such that a single
Newton-Raphson step is sufficient to get within 1-2 ulps of the currect
result.
2. If a is zero, approx_a_recip must be infinite with the same sign as a.
3. If a is infinite, approx_a_recip must be zero with the same sign as a.
If the preconditions are satisfied, which they are for for the _*_rcp_ps
instructions on x86, the result has a maximum relative error of 2 ulps,
and correctly handles reciprocals of zero and infinity.
*/
template <typename Packet, int Steps>
struct generic_reciprocal_newton_step {
static_assert(Steps > 0, "Steps must be at least 1.");
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
run(const Packet& a, const Packet& approx_a_recip) {
using Scalar = typename unpacket_traits<Packet>::type;
const Packet two = pset1<Packet>(Scalar(2));
// Refine the approximation using one Newton-Raphson step:
// x_{i} = x_{i-1} * (2 - a * x_{i-1})
const Packet x =
generic_reciprocal_newton_step<Packet,Steps - 1>::run(a, approx_a_recip);
const Packet tmp = pnmadd(a, x, two);
// If tmp is NaN, it means that a is either +/-0 or +/-Inf.
// In this case return the approximation directly.
const Packet is_not_nan = pcmp_eq(tmp, tmp);
return pselect(is_not_nan, pmul(x, tmp), x);
}
};
template<typename Packet>
struct generic_reciprocal_newton_step<Packet, 0> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
run(const Packet& /*unused*/, const Packet& approx_a_recip) {
return approx_a_recip;
}
};
/** \internal \returns the hyperbolic tan of \a a (coeff-wise)
Doesn't do anything fancy, just a 13/6-degree rational interpolant which
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
is accurate up to a couple of ulps in the (approximate) range [-8, 8],
outside of which tanh(x) = +/-1 in single precision. The input is clamped
to the range [-c, c]. The value c is chosen as the smallest value where
the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004]
2021-09-23 23:22:00 +08:00
the approximation tanh(x) ~= x is used for better accuracy as x tends to zero.
This implementation works on both scalars and packets.
*/
template<typename T>
2016-08-30 15:21:57 +08:00
T generic_fast_tanh_float(const T& a_x)
{
// Clamp the inputs to the range [-c, c]
#ifdef EIGEN_VECTORIZE_FMA
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
const T plus_clamp = pset1<T>(7.99881172180175781f);
const T minus_clamp = pset1<T>(-7.99881172180175781f);
#else
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
const T plus_clamp = pset1<T>(7.90531110763549805f);
const T minus_clamp = pset1<T>(-7.90531110763549805f);
#endif
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
const T tiny = pset1<T>(0.0004f);
const T x = pmax(pmin(a_x, plus_clamp), minus_clamp);
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
const T tiny_mask = pcmp_lt(pabs(a_x), tiny);
// The monomial coefficients of the numerator polynomial (odd).
const T alpha_1 = pset1<T>(4.89352455891786e-03f);
const T alpha_3 = pset1<T>(6.37261928875436e-04f);
const T alpha_5 = pset1<T>(1.48572235717979e-05f);
const T alpha_7 = pset1<T>(5.12229709037114e-08f);
const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
const T alpha_11 = pset1<T>(2.00018790482477e-13f);
const T alpha_13 = pset1<T>(-2.76076847742355e-16f);
// The monomial coefficients of the denominator polynomial (even).
const T beta_0 = pset1<T>(4.89352518554385e-03f);
const T beta_2 = pset1<T>(2.26843463243900e-03f);
const T beta_4 = pset1<T>(1.18534705686654e-04f);
const T beta_6 = pset1<T>(1.19825839466702e-06f);
// Since the polynomials are odd/even, we need x^2.
const T x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
T p = pmadd(x2, alpha_13, alpha_11);
p = pmadd(x2, p, alpha_9);
p = pmadd(x2, p, alpha_7);
p = pmadd(x2, p, alpha_5);
p = pmadd(x2, p, alpha_3);
p = pmadd(x2, p, alpha_1);
p = pmul(x, p);
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
// Evaluate the denominator polynomial q.
T q = pmadd(x2, beta_6, beta_4);
q = pmadd(x2, q, beta_2);
q = pmadd(x2, q, beta_0);
// Divide the numerator by the denominator.
Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
2019-12-17 05:33:42 +08:00
return pselect(tiny_mask, x, pdiv(p, q));
}
template<typename RealScalar>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
{
Improved std::complex sqrt and rsqrt. Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
2021-01-17 02:22:07 +08:00
// IEEE IEC 6059 special cases.
if ((numext::isinf)(x) || (numext::isinf)(y))
return NumTraits<RealScalar>::infinity();
if ((numext::isnan)(x) || (numext::isnan)(y))
return NumTraits<RealScalar>::quiet_NaN();
EIGEN_USING_STD(sqrt);
RealScalar p, qp;
p = numext::maxi(x,y);
if(numext::is_exactly_zero(p)) return RealScalar(0);
qp = numext::mini(y,x) / p;
return p * sqrt(RealScalar(1) + qp*qp);
}
template<typename Scalar>
struct hypot_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static EIGEN_DEVICE_FUNC
inline RealScalar run(const Scalar& x, const Scalar& y)
{
EIGEN_USING_STD(abs);
return positive_real_hypot<RealScalar>(abs(x), abs(y));
}
};
// Generic complex sqrt implementation that correctly handles corner cases
// according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt
template<typename T>
EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) {
// Computes the principal sqrt of the input.
//
// For a complex square root of the number x + i*y. We want to find real
// numbers u and v such that
// (u + i*v)^2 = x + i*y <=>
// u^2 - v^2 + i*2*u*v = x + i*v.
// By equating the real and imaginary parts we get:
// u^2 - v^2 = x
// 2*u*v = y.
//
// For x >= 0, this has the numerically stable solution
// u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
// v = y / (2 * u)
// and for x < 0,
// v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
// u = y / (2 * v)
//
// Letting w = sqrt(0.5 * (|x| + |z|)),
// if x == 0: u = w, v = sign(y) * w
// if x > 0: u = w, v = y / (2 * w)
// if x < 0: u = |y| / (2 * w), v = sign(y) * w
const T x = numext::real(z);
const T y = numext::imag(z);
const T zero = T(0);
Improved std::complex sqrt and rsqrt. Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
2021-01-17 02:22:07 +08:00
const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y)));
return
Improved std::complex sqrt and rsqrt. Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
2021-01-17 02:22:07 +08:00
(numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y)
: numext::is_exactly_zero(x) ? std::complex<T>(w, y < zero ? -w : w)
: x > zero ? std::complex<T>(w, y / (2 * w))
: std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w );
}
Improved std::complex sqrt and rsqrt. Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
2021-01-17 02:22:07 +08:00
// Generic complex rsqrt implementation.
template<typename T>
EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) {
// Computes the principal reciprocal sqrt of the input.
//
// For a complex reciprocal square root of the number z = x + i*y. We want to
// find real numbers u and v such that
// (u + i*v)^2 = 1 / (x + i*y) <=>
// u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2.
// By equating the real and imaginary parts we get:
// u^2 - v^2 = x/|z|^2
// 2*u*v = y/|z|^2.
//
// For x >= 0, this has the numerically stable solution
// u = sqrt(0.5 * (x + |z|)) / |z|
// v = -y / (2 * u * |z|)
// and for x < 0,
// v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z|
// u = -y / (2 * v * |z|)
//
// Letting w = sqrt(0.5 * (|x| + |z|)),
// if x == 0: u = w / |z|, v = -sign(y) * w / |z|
// if x > 0: u = w / |z|, v = -y / (2 * w * |z|)
// if x < 0: u = |y| / (2 * w * |z|), v = -sign(y) * w / |z|
const T x = numext::real(z);
const T y = numext::imag(z);
const T zero = T(0);
const T abs_z = numext::hypot(x, y);
const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z));
const T woz = w / abs_z;
// Corner cases consistent with 1/sqrt(z) on gcc/clang.
return
numext::is_exactly_zero(abs_z) ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
: ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
: numext::is_exactly_zero(x) ? std::complex<T>(woz, y < zero ? woz : -woz)
: x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
Improved std::complex sqrt and rsqrt. Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
2021-01-17 02:22:07 +08:00
: std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz );
}
template<typename T>
EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) {
// Computes complex log.
T a = numext::abs(z);
EIGEN_USING_STD(atan2);
T b = atan2(z.imag(), z.real());
return std::complex<T>(numext::log(a), b);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATHFUNCTIONSIMPL_H