| 
									
										
										
										
											2011-01-26 23:34:45 +08:00
										 |  |  | // This file is part of Eigen, a lightweight C++ template library
 | 
					
						
							|  |  |  | // for linear algebra.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
 | 
					
						
							|  |  |  | //
 | 
					
						
							| 
									
										
										
										
											2012-07-14 02:42:47 +08:00
										 |  |  | // This Source Code Form is subject to the terms of the Mozilla
 | 
					
						
							|  |  |  | // Public License v. 2.0. If a copy of the MPL was not distributed
 | 
					
						
							|  |  |  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
					
						
							| 
									
										
										
										
											2011-01-26 23:34:45 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | #include "lapack_common.h"
 | 
					
						
							|  |  |  | #include <Eigen/Cholesky>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
 | 
					
						
							|  |  |  | EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info)) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   *info = 0; | 
					
						
							|  |  |  |         if(UPLO(*uplo)==INVALID) *info = -1; | 
					
						
							|  |  |  |   else  if(*n<0)                 *info = -2; | 
					
						
							|  |  |  |   else  if(*lda<std::max(1,*n))  *info = -4; | 
					
						
							|  |  |  |   if(*info!=0) | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     int e = -*info; | 
					
						
							|  |  |  |     return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
					
						
							|  |  |  |   MatrixType A(a,*n,*n,*lda); | 
					
						
							|  |  |  |   int ret; | 
					
						
							| 
									
										
										
										
											2013-06-12 15:25:58 +08:00
										 |  |  |   if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A)); | 
					
						
							|  |  |  |   else                ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A)); | 
					
						
							| 
									
										
										
										
											2011-01-26 23:34:45 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   if(ret>=0) | 
					
						
							|  |  |  |     *info = ret+1; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // POTRS solves a system of linear equations A*X = B with a symmetric
 | 
					
						
							|  |  |  | // positive definite matrix A using the Cholesky factorization
 | 
					
						
							|  |  |  | // A = U**T*U or A = L*L**T computed by DPOTRF.
 | 
					
						
							|  |  |  | EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info)) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   *info = 0; | 
					
						
							|  |  |  |         if(UPLO(*uplo)==INVALID) *info = -1; | 
					
						
							|  |  |  |   else  if(*n<0)                 *info = -2; | 
					
						
							|  |  |  |   else  if(*nrhs<0)              *info = -3; | 
					
						
							|  |  |  |   else  if(*lda<std::max(1,*n))  *info = -5; | 
					
						
							|  |  |  |   else  if(*ldb<std::max(1,*n))  *info = -7; | 
					
						
							|  |  |  |   if(*info!=0) | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     int e = -*info; | 
					
						
							|  |  |  |     return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
					
						
							|  |  |  |   Scalar* b = reinterpret_cast<Scalar*>(pb); | 
					
						
							|  |  |  |   MatrixType A(a,*n,*n,*lda); | 
					
						
							|  |  |  |   MatrixType B(b,*n,*nrhs,*ldb); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if(UPLO(*uplo)==UP) | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     A.triangularView<Upper>().adjoint().solveInPlace(B); | 
					
						
							|  |  |  |     A.triangularView<Upper>().solveInPlace(B); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   else | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     A.triangularView<Lower>().solveInPlace(B); | 
					
						
							|  |  |  |     A.triangularView<Lower>().adjoint().solveInPlace(B); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } |