204 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			FortranFixed
		
	
	
	
	
	
		
		
			
		
	
	
			204 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			FortranFixed
		
	
	
	
	
	
|   | *> \brief \b CLARFG
 | ||
|  | *
 | ||
|  | *  =========== DOCUMENTATION ===========
 | ||
|  | *
 | ||
|  | * Online html documentation available at 
 | ||
|  | *            http://www.netlib.org/lapack/explore-html/ 
 | ||
|  | *
 | ||
|  | *> \htmlonly
 | ||
|  | *> Download CLARFG + dependencies 
 | ||
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfg.f"> 
 | ||
|  | *> [TGZ]</a> 
 | ||
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfg.f"> 
 | ||
|  | *> [ZIP]</a> 
 | ||
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfg.f"> 
 | ||
|  | *> [TXT]</a>
 | ||
|  | *> \endhtmlonly 
 | ||
|  | *
 | ||
|  | *  Definition:
 | ||
|  | *  ===========
 | ||
|  | *
 | ||
|  | *       SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
 | ||
|  | * 
 | ||
|  | *       .. Scalar Arguments ..
 | ||
|  | *       INTEGER            INCX, N
 | ||
|  | *       COMPLEX            ALPHA, TAU
 | ||
|  | *       ..
 | ||
|  | *       .. Array Arguments ..
 | ||
|  | *       COMPLEX            X( * )
 | ||
|  | *       ..
 | ||
|  | *  
 | ||
|  | *
 | ||
|  | *> \par Purpose:
 | ||
|  | *  =============
 | ||
|  | *>
 | ||
|  | *> \verbatim
 | ||
|  | *>
 | ||
|  | *> CLARFG generates a complex elementary reflector H of order n, such
 | ||
|  | *> that
 | ||
|  | *>
 | ||
|  | *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
 | ||
|  | *>              (   x   )   (   0  )
 | ||
|  | *>
 | ||
|  | *> where alpha and beta are scalars, with beta real, and x is an
 | ||
|  | *> (n-1)-element complex vector. H is represented in the form
 | ||
|  | *>
 | ||
|  | *>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
 | ||
|  | *>                     ( v )
 | ||
|  | *>
 | ||
|  | *> where tau is a complex scalar and v is a complex (n-1)-element
 | ||
|  | *> vector. Note that H is not hermitian.
 | ||
|  | *>
 | ||
|  | *> If the elements of x are all zero and alpha is real, then tau = 0
 | ||
|  | *> and H is taken to be the unit matrix.
 | ||
|  | *>
 | ||
|  | *> Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 .
 | ||
|  | *> \endverbatim
 | ||
|  | *
 | ||
|  | *  Arguments:
 | ||
|  | *  ==========
 | ||
|  | *
 | ||
|  | *> \param[in] N
 | ||
|  | *> \verbatim
 | ||
|  | *>          N is INTEGER
 | ||
|  | *>          The order of the elementary reflector.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in,out] ALPHA
 | ||
|  | *> \verbatim
 | ||
|  | *>          ALPHA is COMPLEX
 | ||
|  | *>          On entry, the value alpha.
 | ||
|  | *>          On exit, it is overwritten with the value beta.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in,out] X
 | ||
|  | *> \verbatim
 | ||
|  | *>          X is COMPLEX array, dimension
 | ||
|  | *>                         (1+(N-2)*abs(INCX))
 | ||
|  | *>          On entry, the vector x.
 | ||
|  | *>          On exit, it is overwritten with the vector v.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[in] INCX
 | ||
|  | *> \verbatim
 | ||
|  | *>          INCX is INTEGER
 | ||
|  | *>          The increment between elements of X. INCX > 0.
 | ||
|  | *> \endverbatim
 | ||
|  | *>
 | ||
|  | *> \param[out] TAU
 | ||
|  | *> \verbatim
 | ||
|  | *>          TAU is COMPLEX
 | ||
|  | *>          The value tau.
 | ||
|  | *> \endverbatim
 | ||
|  | *
 | ||
|  | *  Authors:
 | ||
|  | *  ========
 | ||
|  | *
 | ||
|  | *> \author Univ. of Tennessee 
 | ||
|  | *> \author Univ. of California Berkeley 
 | ||
|  | *> \author Univ. of Colorado Denver 
 | ||
|  | *> \author NAG Ltd. 
 | ||
|  | *
 | ||
|  | *> \date November 2011
 | ||
|  | *
 | ||
|  | *> \ingroup complexOTHERauxiliary
 | ||
|  | *
 | ||
|  | *  =====================================================================
 | ||
|  |       SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
 | ||
|  | *
 | ||
|  | *  -- LAPACK auxiliary routine (version 3.4.0) --
 | ||
|  | *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | ||
|  | *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | ||
|  | *     November 2011
 | ||
|  | *
 | ||
|  | *     .. Scalar Arguments ..
 | ||
|  |       INTEGER            INCX, N
 | ||
|  |       COMPLEX            ALPHA, TAU
 | ||
|  | *     ..
 | ||
|  | *     .. Array Arguments ..
 | ||
|  |       COMPLEX            X( * )
 | ||
|  | *     ..
 | ||
|  | *
 | ||
|  | *  =====================================================================
 | ||
|  | *
 | ||
|  | *     .. Parameters ..
 | ||
|  |       REAL               ONE, ZERO
 | ||
|  |       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | ||
|  | *     ..
 | ||
|  | *     .. Local Scalars ..
 | ||
|  |       INTEGER            J, KNT
 | ||
|  |       REAL               ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
 | ||
|  | *     ..
 | ||
|  | *     .. External Functions ..
 | ||
|  |       REAL               SCNRM2, SLAMCH, SLAPY3
 | ||
|  |       COMPLEX            CLADIV
 | ||
|  |       EXTERNAL           SCNRM2, SLAMCH, SLAPY3, CLADIV
 | ||
|  | *     ..
 | ||
|  | *     .. Intrinsic Functions ..
 | ||
|  |       INTRINSIC          ABS, AIMAG, CMPLX, REAL, SIGN
 | ||
|  | *     ..
 | ||
|  | *     .. External Subroutines ..
 | ||
|  |       EXTERNAL           CSCAL, CSSCAL
 | ||
|  | *     ..
 | ||
|  | *     .. Executable Statements ..
 | ||
|  | *
 | ||
|  |       IF( N.LE.0 ) THEN
 | ||
|  |          TAU = ZERO
 | ||
|  |          RETURN
 | ||
|  |       END IF
 | ||
|  | *
 | ||
|  |       XNORM = SCNRM2( N-1, X, INCX )
 | ||
|  |       ALPHR = REAL( ALPHA )
 | ||
|  |       ALPHI = AIMAG( ALPHA )
 | ||
|  | *
 | ||
|  |       IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN
 | ||
|  | *
 | ||
|  | *        H  =  I
 | ||
|  | *
 | ||
|  |          TAU = ZERO
 | ||
|  |       ELSE
 | ||
|  | *
 | ||
|  | *        general case
 | ||
|  | *
 | ||
|  |          BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | ||
|  |          SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
 | ||
|  |          RSAFMN = ONE / SAFMIN
 | ||
|  | *
 | ||
|  |          KNT = 0
 | ||
|  |          IF( ABS( BETA ).LT.SAFMIN ) THEN
 | ||
|  | *
 | ||
|  | *           XNORM, BETA may be inaccurate; scale X and recompute them
 | ||
|  | *
 | ||
|  |    10       CONTINUE
 | ||
|  |             KNT = KNT + 1
 | ||
|  |             CALL CSSCAL( N-1, RSAFMN, X, INCX )
 | ||
|  |             BETA = BETA*RSAFMN
 | ||
|  |             ALPHI = ALPHI*RSAFMN
 | ||
|  |             ALPHR = ALPHR*RSAFMN
 | ||
|  |             IF( ABS( BETA ).LT.SAFMIN )
 | ||
|  |      $         GO TO 10
 | ||
|  | *
 | ||
|  | *           New BETA is at most 1, at least SAFMIN
 | ||
|  | *
 | ||
|  |             XNORM = SCNRM2( N-1, X, INCX )
 | ||
|  |             ALPHA = CMPLX( ALPHR, ALPHI )
 | ||
|  |             BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | ||
|  |          END IF
 | ||
|  |          TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
 | ||
|  |          ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
 | ||
|  |          CALL CSCAL( N-1, ALPHA, X, INCX )
 | ||
|  | *
 | ||
|  | *        If ALPHA is subnormal, it may lose relative accuracy
 | ||
|  | *
 | ||
|  |          DO 20 J = 1, KNT
 | ||
|  |             BETA = BETA*SAFMIN
 | ||
|  |  20      CONTINUE
 | ||
|  |          ALPHA = BETA
 | ||
|  |       END IF
 | ||
|  | *
 | ||
|  |       RETURN
 | ||
|  | *
 | ||
|  | *     End of CLARFG
 | ||
|  | *
 | ||
|  |       END
 |