eigen/unsupported/Eigen/Polynomials

141 lines
5.1 KiB
Plaintext
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_POLYNOMIALS_MODULE_H
#define EIGEN_POLYNOMIALS_MODULE_H
#include "../../Eigen/Core"
#include "../../Eigen/Eigenvalues"
#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
2023-11-29 19:12:48 +08:00
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS >= 2)
#ifndef EIGEN_HIDE_HEAVY_CODE
#define EIGEN_HIDE_HEAVY_CODE
#endif
#elif defined EIGEN_HIDE_HEAVY_CODE
2023-11-29 19:12:48 +08:00
#undef EIGEN_HIDE_HEAVY_CODE
#endif
/**
2023-11-29 19:12:48 +08:00
* \defgroup Polynomials_Module Polynomials module
* \brief This module provides a QR based polynomial solver.
*
* To use this module, add
* \code
* #include <unsupported/Eigen/Polynomials>
* \endcode
* at the start of your source file.
*/
// IWYU pragma: begin_exports
#include "src/Polynomials/PolynomialUtils.h"
#include "src/Polynomials/Companion.h"
#include "src/Polynomials/PolynomialSolver.h"
// IWYU pragma: end_exports
/**
2023-11-29 19:12:48 +08:00
\page polynomials Polynomials defines functions for dealing with polynomials
and a QR based polynomial solver.
\ingroup Polynomials_Module
2023-11-29 19:12:48 +08:00
The remainder of the page documents first the functions for evaluating, computing
polynomials, computing estimates about polynomials and next the QR based polynomial
solver.
2023-11-29 19:12:48 +08:00
\section polynomialUtils convenient functions to deal with polynomials
\subsection roots_to_monicPolynomial
The function
\code
void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
\endcode
computes the coefficients \f$ a_i \f$ of
2023-11-29 19:12:48 +08:00
\f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
2023-11-29 19:12:48 +08:00
where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
2023-11-29 19:12:48 +08:00
\subsection poly_eval
The function
\code
T poly_eval( const Polynomials& poly, const T& x )
\endcode
evaluates a polynomial at a given point using stabilized H&ouml;rner method.
2023-11-29 19:12:48 +08:00
The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the
provided roots; then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
2023-11-29 19:12:48 +08:00
\include PolynomialUtils1.cpp
Output: \verbinclude PolynomialUtils1.out
2023-11-29 19:12:48 +08:00
\subsection Cauchy bounds
The function
\code
Real cauchy_max_bound( const Polynomial& poly )
\endcode
provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial
i.e. \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left |
\frac{a_k}{a_d} \right | \f$ The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
The function
\code
Real cauchy_min_bound( const Polynomial& poly )
\endcode
provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given
polynomial i.e. \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, \f$ |r_i| \ge c(p) = \left(
\sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
\section QR polynomial solver class
Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with
the QR algorithm.
The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
\f$
\left [
\begin{array}{cccc}
0 & 0 & 0 & a_0 \\
1 & 0 & 0 & a_1 \\
0 & 1 & 0 & a_2 \\
0 & 0 & 1 & a_3
\end{array} \right ]
\f$
However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots
\f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
\f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
With 32bit (float) floating types this problem shows up frequently.
However, almost always, correct accuracy is reached even in these cases for 64bit
(double) floating types and small polynomial degree (<20).
2023-11-29 19:12:48 +08:00
\include PolynomialSolver1.cpp
In the above example:
-# a simple use of the polynomial solver is shown;
-# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided
to the solver. Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy of the
last root is bad;
-# a simple way to circumvent the problem is shown: use doubles instead of floats.
Output: \verbinclude PolynomialSolver1.out
*/
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
2023-11-29 19:12:48 +08:00
#endif // EIGEN_POLYNOMIALS_MODULE_H