The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`. Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.
Also modified the `bfloat16_float` test to match.
Tested with `cortex-a53` and `cortex-a55`.
This change also contains a few minor cleanups:
1. Remove packet op pnot, which is not needed for anything other than pcmp_le_or_nan,
which can be done in other ways.
2. Remove the "HasInsert" enum, which is no longer needed since we removed the
corresponding packet ops.
3. Add faster pselect op for Packet4i when SSE4.1 is supported.
Among other things, this makes the fast transposeInPlace() method available for Matrix<bool>.
Run on ************** (72 X 2994 MHz CPUs); 2020-05-09T10:51:02.372347913-07:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------------
BM_TransposeInPlace<float>/4 9.77 9.77 71670320
BM_TransposeInPlace<float>/8 21.9 21.9 31929525
BM_TransposeInPlace<float>/16 66.6 66.6 10000000
BM_TransposeInPlace<float>/32 243 243 2879561
BM_TransposeInPlace<float>/59 844 844 829767
BM_TransposeInPlace<float>/64 933 933 750567
BM_TransposeInPlace<float>/128 3944 3945 177405
BM_TransposeInPlace<float>/256 16853 16853 41457
BM_TransposeInPlace<float>/512 204952 204968 3448
BM_TransposeInPlace<float>/1k 1053889 1053861 664
BM_TransposeInPlace<bool>/4 14.4 14.4 48637301
BM_TransposeInPlace<bool>/8 36.0 36.0 19370222
BM_TransposeInPlace<bool>/16 31.5 31.5 22178902
BM_TransposeInPlace<bool>/32 111 111 6272048
BM_TransposeInPlace<bool>/59 626 626 1000000
BM_TransposeInPlace<bool>/64 428 428 1632689
BM_TransposeInPlace<bool>/128 1677 1677 417377
BM_TransposeInPlace<bool>/256 7126 7126 96264
BM_TransposeInPlace<bool>/512 29021 29024 24165
BM_TransposeInPlace<bool>/1k 116321 116330 6068
The reinterpret_casts used in ptranspose(PacketBlock<Packet8cf,4>&)
ptranspose(PacketBlock<Packet8cf,8>&) don't appear to be working
correctly. They're used to convert the kernel parameters to
PacketBlock<Packet8d,T>& so that the complex number versions of
ptranspose can be written using the existing double implementations.
Unfortunately, they don't seem to work and are responsible for 9 unit
test failures in the AVX512 build of tensorflow master. This commit
fixes the issue by manually initialising PacketBlock<Packet8d,T>
variables with the contents of the kernel parameter before calling
the double version of ptranspose, and then copying the resulting
values back into the kernel parameter before returning.
Commit c53eececb0
introduced AVX512 support for complex numbers but required
avx512dq to build. Commit 1d683ae2f5
fixed some but not, it would seem all,
of the hard avx512dq dependencies. Build failures are still evident on
Eigen and TensorFlow when compiling with just avx512f and no avx512dq
using gcc 7.3. Looking at the code there does indeed seem to be a problem.
Commit c53eececb0
calls avx512dq intrinsics directly, e.g, _mm512_extractf32x8_ps
and _mm512_and_ps. This commit fixes the issue by replacing the direct
intrinsic calls with the various wrapper functions that are safe to use on
avx512f only builds.
This is a preparation to a change on gebp_traits, where a new template
argument will be introduced to dictate the packet size, so it won't be
bound to the current/max packet size only anymore.
By having packet types defined early on gebp_traits, one has now to
act on packet types, not scalars anymore, for the enum values defined
on that class. One approach for reaching the vectorizable/size
properties one needs there could be getting the packet's scalar again
with unpacket_traits<>, then the size/Vectorizable enum entries from
packet_traits<>. It turns out guards like "#ifndef
EIGEN_VECTORIZE_AVX512" at AVX/PacketMath.h will hide smaller packet
variations of packet_traits<> for some types (and it makes sense to
keep that). In other words, one can't go back to the scalar and create
a new PacketType, as this will always lead to the maximum packet type
for the architecture.
The less costly/invasive solution for that, thus, is to add the
vectorizable info on every unpacket_traits struct as well.