Commit Graph

33 Commits

Author SHA1 Message Date
Antonio Sánchez
19c39bea29 Fix mixingtypes for g++-11. 2022-02-25 19:28:10 +00:00
Antonio Sanchez
3c724c44cf Fix strict aliasing bug causing product_small failure.
Packet loading is skipped due to aliasing violation, leading to nullopt matrix
multiplication.

Fixes #2327.
2021-09-17 21:09:34 +00:00
Rasmus Munk Larsen
d7d0bf832d Issue an error in case of direct inclusion of internal headers. 2021-09-10 19:12:26 +00:00
Rasmus Munk Larsen
9312a5bf5c Implement a generic vectorized version of Smith's algorithms for complex division. 2021-07-01 23:31:12 +00:00
Rasmus Munk Larsen
52a5f98212 Get rid of code duplication for conj_helper. For packets where LhsType=RhsType a single generic implementation suffices. For scalars, the generic implementation of pconj automatically forwards to numext::conj, so much of the existing specialization can be avoided. For mixed types we still need specializations. 2021-06-24 15:47:48 -07:00
Rasmus Munk Larsen
125cc9a5df Implement vectorized complex square root.
Closes #1905

Measured speedup for sqrt of `complex<float>` on Skylake:

SSE:
```
name                      old time/op             new time/op  delta
BM_eigen_sqrt_ctype/1     49.4ns ± 0%             54.3ns ± 0%  +10.01%
BM_eigen_sqrt_ctype/8      332ns ± 0%               50ns ± 1%  -84.97%
BM_eigen_sqrt_ctype/64    2.81µs ± 1%             0.38µs ± 0%  -86.49%
BM_eigen_sqrt_ctype/512   23.8µs ± 0%              3.0µs ± 0%  -87.32%
BM_eigen_sqrt_ctype/4k     202µs ± 0%               24µs ± 2%  -88.03%
BM_eigen_sqrt_ctype/32k   1.63ms ± 0%             0.19ms ± 0%  -88.18%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%              1.5ms ± 1%  -88.20%
BM_eigen_sqrt_ctype/1M    52.1ms ± 0%              6.2ms ± 0%  -88.18%
```

AVX2:
```
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_ctype/1     53.6ns ± 0%  55.6ns ± 0%   +3.71%
BM_eigen_sqrt_ctype/8      334ns ± 0%    27ns ± 0%  -91.86%
BM_eigen_sqrt_ctype/64    2.79µs ± 0%  0.22µs ± 2%  -92.28%
BM_eigen_sqrt_ctype/512   23.8µs ± 1%   1.7µs ± 1%  -92.81%
BM_eigen_sqrt_ctype/4k     201µs ± 0%    14µs ± 1%  -93.24%
BM_eigen_sqrt_ctype/32k   1.62ms ± 0%  0.11ms ± 1%  -93.29%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%   0.9ms ± 1%  -93.31%
BM_eigen_sqrt_ctype/1M    52.0ms ± 0%   3.5ms ± 1%  -93.31%
```

AVX512:
```
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_ctype/1     53.7ns ± 0%  56.2ns ± 1%   +4.75%
BM_eigen_sqrt_ctype/8      334ns ± 0%    18ns ± 2%  -94.63%
BM_eigen_sqrt_ctype/64    2.79µs ± 0%  0.12µs ± 1%  -95.54%
BM_eigen_sqrt_ctype/512   23.9µs ± 1%   1.0µs ± 1%  -95.89%
BM_eigen_sqrt_ctype/4k     202µs ± 0%     8µs ± 1%  -96.13%
BM_eigen_sqrt_ctype/32k   1.63ms ± 0%  0.06ms ± 1%  -96.15%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%   0.5ms ± 4%  -96.11%
BM_eigen_sqrt_ctype/1M    52.1ms ± 0%   2.0ms ± 1%  -96.13%
```
2020-12-08 18:13:35 -08:00
Rasmus Munk Larsen
79818216ed Revert "Fix Half NaN definition and test."
This reverts commit c770746d70.
2020-11-24 12:57:28 -08:00
Rasmus Munk Larsen
c770746d70 Fix Half NaN definition and test.
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`.  Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.

Also modified the `bfloat16_float` test to match.

Tested with `cortex-a53` and `cortex-a55`.
2020-11-24 20:53:07 +00:00
Rasmus Munk Larsen
2d63706545 Add missing parens around macro argument. 2020-11-18 00:24:19 +00:00
Rasmus Munk Larsen
6bba58f109 Replace SSE_SHUFFLE_MASK macro with shuffle_mask. 2020-11-17 15:28:37 -08:00
Rasmus Munk Larsen
9b411757ab Add missing packet ops for bool, and make it pass the same packet op unit tests as other arithmetic types.
This change also contains a few minor cleanups:
  1. Remove packet op pnot, which is not needed for anything other than pcmp_le_or_nan,
     which can be done in other ways.
  2. Remove the "HasInsert" enum, which is no longer needed since we removed the
     corresponding packet ops.
  3. Add faster pselect op for Packet4i when SSE4.1 is supported.

Among other things, this makes the fast transposeInPlace() method available for Matrix<bool>.

Run on ************** (72 X 2994 MHz CPUs); 2020-05-09T10:51:02.372347913-07:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                        Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------------
BM_TransposeInPlace<float>/4            9.77           9.77    71670320
BM_TransposeInPlace<float>/8           21.9           21.9     31929525
BM_TransposeInPlace<float>/16          66.6           66.6     10000000
BM_TransposeInPlace<float>/32         243            243        2879561
BM_TransposeInPlace<float>/59         844            844         829767
BM_TransposeInPlace<float>/64         933            933         750567
BM_TransposeInPlace<float>/128       3944           3945         177405
BM_TransposeInPlace<float>/256      16853          16853          41457
BM_TransposeInPlace<float>/512     204952         204968           3448
BM_TransposeInPlace<float>/1k     1053889        1053861            664
BM_TransposeInPlace<bool>/4            14.4           14.4     48637301
BM_TransposeInPlace<bool>/8            36.0           36.0     19370222
BM_TransposeInPlace<bool>/16           31.5           31.5     22178902
BM_TransposeInPlace<bool>/32          111            111        6272048
BM_TransposeInPlace<bool>/59          626            626        1000000
BM_TransposeInPlace<bool>/64          428            428        1632689
BM_TransposeInPlace<bool>/128        1677           1677         417377
BM_TransposeInPlace<bool>/256        7126           7126          96264
BM_TransposeInPlace<bool>/512       29021          29024          24165
BM_TransposeInPlace<bool>/1k       116321         116330           6068
2020-05-14 22:39:13 +00:00
Rasmus Munk Larsen
c1d944dd91 Remove packet ops pinsertfirst and pinsertlast that are only used in a single place, and can be replaced by other ops when constructing the first/final packet in linspaced_op_impl::packetOp.
I cannot measure any performance changes for SSE, AVX, or AVX512.

name                                 old time/op             new time/op             delta
BM_LinSpace<float>/1                 1.63ns ± 0%             1.63ns ± 0%   ~             (p=0.762 n=5+5)
BM_LinSpace<float>/8                 4.92ns ± 3%             4.89ns ± 3%   ~             (p=0.421 n=5+5)
BM_LinSpace<float>/64                34.6ns ± 0%             34.6ns ± 0%   ~             (p=0.841 n=5+5)
BM_LinSpace<float>/512                217ns ± 0%              217ns ± 0%   ~             (p=0.421 n=5+5)
BM_LinSpace<float>/4k                1.68µs ± 0%             1.68µs ± 0%   ~             (p=1.000 n=5+5)
BM_LinSpace<float>/32k               13.3µs ± 0%             13.3µs ± 0%   ~             (p=0.905 n=5+4)
BM_LinSpace<float>/256k               107µs ± 0%              107µs ± 0%   ~             (p=0.841 n=5+5)
BM_LinSpace<float>/1M                 427µs ± 0%              427µs ± 0%   ~             (p=0.690 n=5+5)
2020-05-08 15:41:50 -07:00
Rasmus Munk Larsen
225ab040e0 Remove unused packet op "palign".
Clean up a compiler warning in c++03 mode in AVX512/Complex.h.
2020-05-07 17:14:26 -07:00
Rasmus Munk Larsen
e80ec24357 Remove unused packet op "preduxp". 2020-04-23 18:17:14 +00:00
Joel Holdsworth
52d54278be Additional NEON packet-math operations 2020-03-26 20:18:19 +00:00
Eugene Zhulenev
e9f0eb8a5e Add masked_store_available to unpacket_traits 2019-05-02 14:52:58 -07:00
Anuj Rawat
8c7a6feb8e Adding lowlevel APIs for optimized RHS packet load in TensorFlow
SpatialConvolution

Low-level APIs are added in order to optimized packet load in gemm_pack_rhs
in TensorFlow SpatialConvolution. The optimization is for scenario when a
packet is split across 2 adjacent columns. In this case we read it as two
'partial' packets and then merge these into 1. Currently this only works for
Packet16f (AVX512) and Packet8f (AVX2). We plan to add this for other
packet types (such as Packet8d) also.

This optimization shows significant speedup in SpatialConvolution with
certain parameters. Some examples are below.

Benchmark parameters are specified as:
Batch size, Input dim, Depth, Num of filters, Filter dim

Speedup numbers are specified for number of threads 1, 2, 4, 8, 16.

AVX512:

Parameters                  | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128,   24x24,  3, 64,   5x5 |2.18X, 2.13X, 1.73X, 1.64X, 1.66X
128,   24x24,  1, 64,   8x8 |2.00X, 1.98X, 1.93X, 1.91X, 1.91X
 32,   24x24,  3, 64,   5x5 |2.26X, 2.14X, 2.17X, 2.22X, 2.33X
128,   24x24,  3, 64,   3x3 |1.51X, 1.45X, 1.45X, 1.67X, 1.57X
 32,   14x14, 24, 64,   5x5 |1.21X, 1.19X, 1.16X, 1.70X, 1.17X
128, 128x128,  3, 96, 11x11 |2.17X, 2.18X, 2.19X, 2.20X, 2.18X

AVX2:

Parameters                  | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128,   24x24,  3, 64,   5x5 | 1.66X, 1.65X, 1.61X, 1.56X, 1.49X
 32,   24x24,  3, 64,   5x5 | 1.71X, 1.63X, 1.77X, 1.58X, 1.68X
128,   24x24,  1, 64,   5x5 | 1.44X, 1.40X, 1.38X, 1.37X, 1.33X
128,   24x24,  3, 64,   3x3 | 1.68X, 1.63X, 1.58X, 1.56X, 1.62X
128, 128x128,  3, 96, 11x11 | 1.36X, 1.36X, 1.37X, 1.37X, 1.37X

In the higher level benchmark cifar10, we observe a runtime improvement
of around 6% for AVX512 on Intel Skylake server (8 cores).

On lower level PackRhs micro-benchmarks specified in TensorFlow
tensorflow/core/kernels/eigen_spatial_convolutions_test.cc, we observe
the following runtime numbers:

AVX512:

Parameters                                                     | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56)  |  41350                     | 15073                   | 2.74X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56)  |   7277                     |  7341                   | 0.99X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56)  |   8675                     |  8681                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56)  |  24155                     | 16079                   | 1.50X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56)  |  25052                     | 17152                   | 1.46X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) |  18269                     | 18345                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) |  19468                     | 19872                   | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432)   | 156060                     | 42432                   | 3.68X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432)   | 132701                     | 36944                   | 3.59X

AVX2:

Parameters                                                     | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56)  | 26233                      | 12393                   | 2.12X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56)  |  6091                      |  6062                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56)  |  7427                      |  7408                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56)  | 23453                      | 20826                   | 1.13X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56)  | 23167                      | 22091                   | 1.09X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 23422                      | 23682                   | 0.99X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 23165                      | 23663                   | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432)   | 72689                      | 44969                   | 1.62X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432)   | 61732                      | 39779                   | 1.55X

All benchmarks on Intel Skylake server with 8 cores.
2019-04-20 06:46:43 +00:00
Gael Guennebaud
eb4c6bb22d Fix conflicts and merge 2019-01-30 15:57:08 +01:00
Rasmus Munk Larsen
7401e2541d Fix compilation error for logical packet ops with older compilers. 2019-01-16 14:43:33 -08:00
Gael Guennebaud
3c9e6d206d AVX512: fix pgather/pscatter for Packet4cd and unaligned pointers 2019-01-14 17:57:28 +01:00
Rasmus Munk Larsen
fff5a5b579 Resolve. 2019-01-11 10:28:52 -08:00
Rasmus Larsen
74882471d0 Merged eigen/eigen into default 2019-01-11 10:20:55 -08:00
Mark D Ryan
3c9add6598 Remove reinterpret_cast from AVX512 complex implementation
The reinterpret_casts used in ptranspose(PacketBlock<Packet8cf,4>&)
ptranspose(PacketBlock<Packet8cf,8>&) don't appear to be working
correctly.  They're used to convert the kernel parameters to
PacketBlock<Packet8d,T>& so that the complex number versions of
ptranspose can be written using the existing double implementations.
Unfortunately, they don't seem to work and are responsible for 9 unit
test failures in the AVX512 build of tensorflow master.  This commit
fixes the issue by manually initialising PacketBlock<Packet8d,T>
variables with the contents of the kernel parameter before calling
the double version of ptranspose, and then copying the resulting
values back into the kernel parameter before returning.
2019-01-11 14:02:09 +01:00
Rasmus Munk Larsen
fcfced13ed Rename pones -> ptrue. Use _CMP_TRUE_UQ where appropriate. 2019-01-09 17:20:33 -08:00
Rasmus Munk Larsen
e15bb785ad Collapsed revision
* Add packet up "pones". Write pnot(a) as pxor(pones(a), a).
* Collapsed revision
* Simplify a bit.
* Undo useless diffs.
* Fix typo.
2019-01-09 16:34:23 -08:00
Rasmus Munk Larsen
8f04442526 Collapsed revision
* Collapsed revision
* Add packet up "pones". Write pnot(a) as pxor(pones(a), a).
* Collapsed revision
* Simplify a bit.
* Undo useless diffs.
* Fix typo.
2019-01-09 16:34:23 -08:00
Rasmus Munk Larsen
f2767112c8 Simplify a bit. 2019-01-09 16:29:18 -08:00
Rasmus Munk Larsen
055f0b73db Add support for pcmp_eq and pnot, including for complex types. 2019-01-07 16:53:36 -08:00
Mark D Ryan
bc5dd4cafd PR560: Fix the AVX512f only builds
Commit c53eececb0
 introduced AVX512 support for complex numbers but required
avx512dq to build.  Commit 1d683ae2f5
 fixed some but not, it would seem all,
of the hard avx512dq dependencies.  Build failures are still evident on
Eigen and TensorFlow when compiling with just avx512f and no avx512dq
using gcc 7.3.  Looking at the code there does indeed seem to be a problem.
Commit c53eececb0
 calls avx512dq intrinsics directly, e.g, _mm512_extractf32x8_ps
and _mm512_and_ps.  This commit fixes the issue by replacing the direct
intrinsic calls with the various wrapper functions that are safe to use on
avx512f only builds.
2019-01-03 14:33:04 +01:00
Gustavo Lima Chaves
e763fcd09e Introducing "vectorized" byte on unpacket_traits structs
This is a preparation to a change on gebp_traits, where a new template
argument will be introduced to dictate the packet size, so it won't be
bound to the current/max packet size only anymore.

By having packet types defined early on gebp_traits, one has now to
act on packet types, not scalars anymore, for the enum values defined
on that class. One approach for reaching the vectorizable/size
properties one needs there could be getting the packet's scalar again
with unpacket_traits<>, then the size/Vectorizable enum entries from
packet_traits<>. It turns out guards like "#ifndef
EIGEN_VECTORIZE_AVX512" at AVX/PacketMath.h will hide smaller packet
variations of packet_traits<> for some types (and it makes sense to
keep that). In other words, one can't go back to the scalar and create
a new PacketType, as this will always lead to the maximum packet type
for the architecture.

The less costly/invasive solution for that, thus, is to add the
vectorizable info on every unpacket_traits struct as well.
2018-12-19 14:24:44 -08:00
Gael Guennebaud
81c27325ae bug #1641: fix testing of pandnot and fix pandnot for complex on SSE/AVX/AVX512 2018-12-08 14:27:48 +01:00
Gael Guennebaud
1d683ae2f5 Fix compilation with avx512f only, i.e., no AVX512DQ 2018-12-06 18:11:07 +01:00
Gael Guennebaud
c53eececb0 Implement AVX512 vectorization of std::complex<float/double> 2018-12-06 15:58:06 +01:00