* Abstracting the pointer type so that both SYCL memory and pointer can be captured.
* Converting SYCL virtual pointer to SYCL device memory in Eigen evaluator class.
* Binding SYCL placeholder accessor to command group handler by using bind method in Eigen evaluator node.
* Adding SYCL macro for controlling loop unrolling.
* Modifying the TensorDeviceSycl.h and SYCL executor method to adopt the above changes.
* Allow specifying multiple GPU architectures. E.g.:
cmake -DEIGEN_CUDA_COMPUTE_ARCH="60;70"
* Pass CUDA SDK path to clang. Without it it will default to /usr/local/cuda
which may not be the right location, if cmake was invoked with
-DCUDA_TOOLKIT_ROOT_DIR=/some/other/CUDA/path
This fixed 2 deadlocks caused by sloppiness in the EventCount logic.
Both most likely were introduced by cl/236729920 which includes the new EventCount algorithm:
01da8caf00
bug #1 (Prewait):
Prewait must not consume existing signals.
Consider the following scenario.
There are 2 thread pool threads (1 and 2) and 1 external thread (3). RunQueue is empty.
Thread 1 checks the queue, calls Prewait, checks RunQueue again and now is going to call CommitWait.
Thread 2 checks the queue and now is going to call Prewait.
Thread 3 submits 2 tasks, EventCount signals is set to 1 because only 1 waiter is registered the second signal is discarded).
Now thread 2 resumes and calls Prewait and takes away the signal.
Thread 1 resumes and calls CommitWait, there are no pending signals anymore, so it blocks.
As the result we have 2 tasks, but only 1 thread is running.
bug #2 (CancelWait):
CancelWait must not take away a signal if it's not sure that the signal was meant for this thread.
When one thread blocks and another submits a new task concurrently, the EventCount protocol guarantees only the following properties (similar to the Dekker's algorithm):
(a) the registered waiter notices presence of the new task and does not block
(b) the signaler notices presence of the waiters and wakes it
(c) both the waiter notices presence of the new task and signaler notices presence of the waiter
[it's only that both of them do not notice each other must not be possible, because it would lead to a deadlock]
CancelWait is called for cases (a) and (c). For case (c) it is OK to take the notification signal away, but it's not OK for (a) because nobody queued a signals for us and we take away a signal meant for somebody else.
Consider:
Thread 1 calls Prewait, checks RunQueue, it's empty, now it's going to call CommitWait.
Thread 3 submits 2 tasks, EventCount signals is set to 1 because only 1 waiter is registered the second signal is discarded).
Thread 2 calls Prewait, checks RunQueue, discovers the tasks, calls CancelWait and consumes the pending signal (meant for thread 1).
Now Thread 1 resumes and calls CommitWait, since there are no signals it blocks.
As the result we have 2 tasks, but only 1 thread is running.
Both deadlocks are only a problem if the tasks require parallelism. Most computational tasks do not require parallelism, i.e. a single thread will run task 1, finish it and then dequeue and run task 2.
This fix undoes some of the sloppiness in the EventCount that was meant to reduce CPU consumption by idle threads, because we now have more threads running in these corner cases. But we still don't have pthread_yield's and maybe the strictness introduced by this change will actually help to reduce tail latency because we will have threads running when we actually need them running.
B) fix deadlock in thread pool caused by RunQueue
This fixed a deadlock caused by sloppiness in the RunQueue logic.
Most likely this was introduced with the non-blocking thread pool.
The deadlock only affects workloads that require parallelism.
Most computational tasks don't require parallelism.
PopBack must not fail spuriously. If it does, it can effectively lead to single thread consuming several wake up signals.
Consider 2 worker threads are blocked.
External thread submits a task. One of the threads is woken.
It tries to steal the task, but fails due to a spurious failure in PopBack (external thread submits another task and holds the lock).
The thread executes blocking protocol again (it won't block because NonEmptyQueueIndex is precise and the thread will discover pending work, but it has called PrepareWait).
Now external thread submits another task and signals EventCount again.
The signal is consumed by the first thread again. But now we have 2 tasks pending but only 1 worker thread running.
It may be possible to fix this in a different way: make EventCount::CancelWait forward wakeup signal to a blocked thread rather then consuming it. But this looks more complex and I am not 100% that it will fix the bug.
It's also possible to have 2 versions of PopBack: one will do try_to_lock and another won't. Then worker threads could first opportunistically check all queues with try_to_lock, and only use the blocking version before blocking. But let's first fix the bug with the simpler change.
The current algorithm requires threads to commit/cancel waiting in order
they called Prewait. Spinning caused by that serialization can consume
lots of CPU time on some workloads. Restructure the algorithm to not
require that serialization and remove spin waits from Commit/CancelWait.
Note: this reduces max number of threads from 2^16 to 2^14 to leave
more space for ABA counter (which is now 22 bits).
Implementation details are explained in comments.
- cleanup noise in imaginary part of real roots
- take into account the magnitude of the derivative to check roots.
- use <= instead of < at appropriate places
block
Builds configured without the -DEIGEN_TEST_CXX11=ON flag would fail
right away without this, as this test seems to rely on those language
features. The skip under compilation with MSVC was kept.
The type used in Eigen::DSizes needs to be at least 8 bytes long. Internally Tensor tries to convert this to an __int64 on Windows and this fails to build. On Linux, long and long long are both 8 byte integer types.
* * *
Changing from "long long" to "std::int64_t".
"... always use {NonBlocking}ThreadPool". It seems the non-blocking
implementation was me the default/only one, but a reference to the old
name was left unmodified. Fix that.
There are two major changes (and a few minor ones which are not listed here...see PR discussion for details)
1. Eigen::half implementations for HIP and CUDA have been merged.
This means that
- `CUDA/Half.h` and `HIP/hcc/Half.h` got merged to a new file `GPU/Half.h`
- `CUDA/PacketMathHalf.h` and `HIP/hcc/PacketMathHalf.h` got merged to a new file `GPU/PacketMathHalf.h`
- `CUDA/TypeCasting.h` and `HIP/hcc/TypeCasting.h` got merged to a new file `GPU/TypeCasting.h`
After this change the `HIP/hcc` directory only contains one file `math_constants.h`. That will go away too once that file becomes a part of the HIP install.
2. new macros EIGEN_GPUCC, EIGEN_GPU_COMPILE_PHASE and EIGEN_HAS_GPU_FP16 have been added and the code has been updated to use them where appropriate.
- `EIGEN_GPUCC` is the same as `(EIGEN_CUDACC || EIGEN_HIPCC)`
- `EIGEN_GPU_DEVICE_COMPILE` is the same as `(EIGEN_CUDA_ARCH || EIGEN_HIP_DEVICE_COMPILE)`
- `EIGEN_HAS_GPU_FP16` is the same as `(EIGEN_HAS_CUDA_FP16 or EIGEN_HAS_HIP_FP16)`
The commit with Bessel functions i0e and i1e placed the ifdef/endif incorrectly,
causing i0e/i1e to be undefined when EIGEN_HAS_C99_MATH=0. These functions do not
actually require C99 math, so now they are always available.
In addition to igamma(a, x), this code implements:
* igamma_der_a(a, x) = d igamma(a, x) / da -- derivative of igamma with respect to the parameter
* gamma_sample_der_alpha(alpha, sample) -- reparameterization derivative of a Gamma(alpha, 1) random variable sample with respect to the alpha parameter
The derivatives are computed by forward mode differentiation of the igamma(a, x) code. Although gamma_sample_der_alpha can be implemented via igamma_der_a, a separate function is more accurate and efficient due to analytical cancellation of some terms. All three functions are implemented by a method parameterized with "mode" that always computes the derivatives, but does not return them unless required by the mode. The compiler is expected to (and, based on benchmarks, does) skip the unnecessary computations depending on the mode.
This commit enables the use of Eigen on HIP kernels / AMD GPUs. Support has been added along the same lines as what already exists for using Eigen in CUDA kernels / NVidia GPUs.
Application code needs to explicitly define EIGEN_USE_HIP when using Eigen in HIP kernels. This is because some of the CUDA headers get picked up by default during Eigen compile (irrespective of whether or not the underlying compiler is CUDACC/NVCC, for e.g. Eigen/src/Core/arch/CUDA/Half.h). In order to maintain this behavior, the EIGEN_USE_HIP macro is used to switch to using the HIP version of those header files (see Eigen/Core and unsupported/Eigen/CXX11/Tensor)
Use the "-DEIGEN_TEST_HIP" cmake option to enable the HIP specific unit tests.
The functions are conventionally called i0e and i1e. The exponentially scaled version is more numerically stable. The standard Bessel functions can be obtained as i0(x) = exp(|x|) i0e(x)
The code is ported from Cephes and tested against SciPy.
1. Added new packet functions using SIMD for NByOne, OneByN cases
2. Modified existing packet functions to reduce index calculations when input stride is non-SIMD
3. Added 4 test cases to cover the new packet functions
Also, a few minor fixes for GPU tests running in HIP mode.
1. Adding an include for hip/hip_runtime.h in the Macros.h file
For HIP __host__ and __device__ are macros which are defined in hip headers.
Their definitions need to be included before their use in the file.
2. Fixing the compile failure in TensorContractionGpu introduced by the commit to
"Fuse computations into the Tensor contractions using output kernel"
3. Fixing a HIP/clang specific compile error by making the struct-member assignment explicit
This provide several advantages:
- more flexibility in designing unit tests
- unit tests can be glued to speed up compilation
- unit tests are compiled with same predefined macros, which is a requirement for zapcc
bug #1464 : Fixes construction of EulerAngles from 3D vector expression.
Approved-by: Tal Hadad <tal_hd@hotmail.com>
Approved-by: Abhijit Kundu <abhijit.kundu@gatech.edu>
Applying Benoit's comment for Fixing ImageVolumePatch.
* Applying Benoit's comment for Fixing ImageVolumePatch. Fixing conflict on cmake file.
* Fixing dealocation of the memory in ImagePatch test for SYCL.
* Fixing the automerge issue.
* Adds a hint to ThreadPool allowing us to turn off spin waiting. Currently each reader and record yielder op in a graph creates a threadpool with a thread that spins for 1000 iterations through the work stealing loop before yielding. This is wasteful for such ops that process I/O.
* This also changes the number of iterations through the steal loop to be inversely proportional to the number of threads. Since the time of each iteration is proportional to the number of threads, this yields roughly a constant spin time.
* Implement a separate worker loop for the num_threads == 1 case since there is no point in going through the expensive steal loop. Moreover, since Steal() calls PopBack() on the victim queues it might reverse the order in which ops are executed, compared to the order in which they are scheduled, which is usually counter-productive for the types of I/O workloads the single thread pools tend to be used for.
* Store num_threads in a member variable for simplicity and to avoid a data race between the thread creation loop and worker threads calling threads_.size().