Compare commits

...

5 Commits

Author SHA1 Message Date
449ec69bab
add 1D Poission Eq. matrix-free example 2024-01-02 01:12:59 +08:00
Rasmus Munk Larsen
3147391d94 Change version to 3.4.0. 2021-08-18 13:41:58 -07:00
Antonio Sanchez
115591b9e3 Workaround VS 2017 arg bug.
In VS 2017, `std::arg` for real inputs always returns 0, even for
negative inputs.  It should return `PI` for negative real values.
This seems to be fixed in VS 2019 (MSVC 1920).


(cherry picked from commit 2b410ecbef)
2021-08-18 19:04:50 +00:00
Antonio Sanchez
fd100138dd Remove unaligned assert tests.
Manually constructing an unaligned object declared as aligned
invokes UB, so we cannot technically check for alignment from
within the constructor.  Newer versions of clang optimize away
this check.

Removing the affected tests.


(cherry picked from commit 0c4ae56e37)
2021-08-18 18:39:04 +00:00
Jakob Struye
1ec173b54e Clearer doc for squaredNorm
(cherry picked from commit 53a29c7e35)
2021-08-18 15:12:36 +00:00
10 changed files with 151 additions and 208 deletions

View File

@ -86,7 +86,7 @@ MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
//---------- implementation of L2 norm and related functions ---------- //---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the squared Frobenius norm.
* In both cases, it consists in the sum of the square of all the matrix entries. * In both cases, it consists in the sum of the square of all the matrix entries.
* For vectors, this is also equals to the dot product of \c *this with itself. * For vectors, this is also equals to the dot product of \c *this with itself.
* *

View File

@ -572,7 +572,9 @@ struct rint_retval
* Implementation of arg * * Implementation of arg *
****************************************************************************/ ****************************************************************************/
#if EIGEN_HAS_CXX11_MATH // Visual Studio 2017 has a bug where arg(float) returns 0 for negative inputs.
// This seems to be fixed in VS 2019.
#if EIGEN_HAS_CXX11_MATH && (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920)
// std::arg is only defined for types of std::complex, or integer types or float/double/long double // std::arg is only defined for types of std::complex, or integer types or float/double/long double
template<typename Scalar, template<typename Scalar,
bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value

View File

@ -16,8 +16,8 @@
//------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------
#define EIGEN_WORLD_VERSION 3 #define EIGEN_WORLD_VERSION 3
#define EIGEN_MAJOR_VERSION 3 #define EIGEN_MAJOR_VERSION 4
#define EIGEN_MINOR_VERSION 91 #define EIGEN_MINOR_VERSION 0
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \ #define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \ (EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \

145
doc/examples/matrixfree.cpp Normal file
View File

@ -0,0 +1,145 @@
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/IterativeSolvers>
class MatrixReplacement;
using Eigen::SparseMatrix;
namespace Eigen {
namespace internal {
// MatrixReplacement looks-like a SparseMatrix, so let's inherits its traits:
template<>
struct traits<MatrixReplacement> : public Eigen::internal::traits<Eigen::SparseMatrix<double> >
{};
}
}
// Example of a matrix-free wrapper from a user type to Eigen's compatible type
// For the sake of simplicity, this example simply wrap a Eigen::SparseMatrix.
class MatrixReplacement : public Eigen::EigenBase<MatrixReplacement> {
public:
// Required typedefs, constants, and method:
typedef double Scalar;
typedef double RealScalar;
typedef int StorageIndex;
enum {
ColsAtCompileTime = Eigen::Dynamic,
MaxColsAtCompileTime = Eigen::Dynamic,
IsRowMajor = false
};
Index rows() const { return _n; }
Index cols() const { return _n; }
template<typename Rhs>
Eigen::Product<MatrixReplacement,Rhs,Eigen::AliasFreeProduct> operator*(const Eigen::MatrixBase<Rhs>& x) const {
return Eigen::Product<MatrixReplacement,Rhs,Eigen::AliasFreeProduct>(*this, x.derived());
}
// Custom API:
MatrixReplacement(int n){ _n = n; }
private:
int _n;
};
// Implementation of MatrixReplacement * Eigen::DenseVector though a specialization of internal::generic_product_impl:
namespace Eigen {
namespace internal {
template<typename Rhs>
struct generic_product_impl<MatrixReplacement, Rhs, SparseShape, DenseShape, GemvProduct> // GEMV stands for matrix-vector
: generic_product_impl_base<MatrixReplacement,Rhs,generic_product_impl<MatrixReplacement,Rhs> >
{
typedef typename Product<MatrixReplacement,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const MatrixReplacement& lhs, const Rhs& rhs, const Scalar& alpha)
{
// This method should implement "dst += alpha * lhs * rhs" inplace,
// however, for iterative solvers, alpha is always equal to 1, so let's not bother about it.
assert(alpha==Scalar(1) && "scaling is not implemented");
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
// LLS:
// the matrix comes from 1D Poisson Eq. -u_{xx} = f
// FD scheme is: 2 U_{i} - U_{i-1}-U_{i+1} = f_i, i=0,...,n-1
// BC condition: U_{-1}=0, U_{n}=0
int n = lhs.cols();
Scalar *dst_ptr = dst.data();
const Scalar *rhs_ptr = rhs.data();
for(int i=0;i<n;i++) {
Scalar v=rhs_ptr[i];
Scalar vp,vm;
if(i==n-1) {
vp = 0.0;
} else {
vp = rhs_ptr[i+1];
}
if(i==0) {
vm = 0.0;
} else {
vm = rhs_ptr[i-1];
}
dst_ptr[i]=2.0*v-vp-vm;
}
}
};
}
}
int main()
{
int n = 4;
MatrixReplacement A(n);
Eigen::VectorXd b(n), x;
b.setOnes();
// Solve Ax = b using various iterative solver with matrix-free version:
{
Eigen::ConjugateGradient<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> cg;
cg.compute(A);
x = cg.solve(b);
std::cout << "CG: #iterations: " << cg.iterations() << ", estimated error: " << cg.error() << std::endl;
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
}
{
Eigen::BiCGSTAB<MatrixReplacement, Eigen::IdentityPreconditioner> bicg;
bicg.compute(A);
x = bicg.solve(b);
std::cout << "BiCGSTAB: #iterations: " << bicg.iterations() << ", estimated error: " << bicg.error() << std::endl;
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
}
{
Eigen::GMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "GMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
}
{
Eigen::DGMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "DGMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
}
{
Eigen::MINRES<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> minres;
minres.compute(A);
x = minres.solve(b);
std::cout << "MINRES: #iterations: " << minres.iterations() << ", estimated error: " << minres.error() << std::endl;
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
}
}

View File

@ -164,7 +164,6 @@ ei_add_test(nullary)
ei_add_test(mixingtypes) ei_add_test(mixingtypes)
ei_add_test(io) ei_add_test(io)
ei_add_test(packetmath "-DEIGEN_FAST_MATH=1") ei_add_test(packetmath "-DEIGEN_FAST_MATH=1")
ei_add_test(unalignedassert)
ei_add_test(vectorization_logic) ei_add_test(vectorization_logic)
ei_add_test(basicstuff) ei_add_test(basicstuff)
ei_add_test(constructor) ei_add_test(constructor)

View File

@ -172,11 +172,6 @@ template<typename Scalar> void hyperplane_alignment()
VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
#endif
} }

View File

@ -110,11 +110,6 @@ template<typename Scalar> void parametrizedline_alignment()
VERIFY_IS_APPROX(p1->origin(), p3->origin()); VERIFY_IS_APPROX(p1->origin(), p3->origin());
VERIFY_IS_APPROX(p1->direction(), p2->direction()); VERIFY_IS_APPROX(p1->direction(), p2->direction());
VERIFY_IS_APPROX(p1->direction(), p3->direction()); VERIFY_IS_APPROX(p1->direction(), p3->direction());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Line4a));
#endif
} }
EIGEN_DECLARE_TEST(geo_parametrizedline) EIGEN_DECLARE_TEST(geo_parametrizedline)

View File

@ -218,10 +218,6 @@ template<typename Scalar> void mapQuaternion(void){
VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
#ifdef EIGEN_VECTORIZE
if(internal::packet_traits<Scalar>::Vectorizable)
VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
#endif
VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
@ -281,10 +277,6 @@ template<typename Scalar> void quaternionAlignment(void){
VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
#endif
} }
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)

View File

@ -582,11 +582,6 @@ template<typename Scalar> void transform_alignment()
VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3)); VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
#endif
} }
template<typename Scalar, int Dim, int Options> void transform_products() template<typename Scalar, int Dim, int Options> void transform_products()

View File

@ -1,180 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_TEST_PART_1)
// default
#elif defined(EIGEN_TEST_PART_2)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 16
#define EIGEN_MAX_ALIGN_BYTES 16
#elif defined(EIGEN_TEST_PART_3)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 32
#define EIGEN_MAX_ALIGN_BYTES 32
#elif defined(EIGEN_TEST_PART_4)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 64
#define EIGEN_MAX_ALIGN_BYTES 64
#endif
#include "main.h"
typedef Matrix<float, 6,1> Vector6f;
typedef Matrix<float, 8,1> Vector8f;
typedef Matrix<float, 12,1> Vector12f;
typedef Matrix<double, 5,1> Vector5d;
typedef Matrix<double, 6,1> Vector6d;
typedef Matrix<double, 7,1> Vector7d;
typedef Matrix<double, 8,1> Vector8d;
typedef Matrix<double, 9,1> Vector9d;
typedef Matrix<double,10,1> Vector10d;
typedef Matrix<double,12,1> Vector12d;
struct TestNew1
{
MatrixXd m; // good: m will allocate its own array, taking care of alignment.
TestNew1() : m(20,20) {}
};
struct TestNew2
{
Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned,
// 8-byte alignment is good enough here, which we'll get automatically
};
struct TestNew3
{
Vector2f m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned
};
struct TestNew4
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Vector2d m;
float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects
};
struct TestNew5
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
float f; // try the f at first -- the EIGEN_ALIGN_MAX attribute of m should make that still work
Matrix4f m;
};
struct TestNew6
{
Matrix<float,2,2,DontAlign> m; // good: no alignment requested
float f;
};
template<bool Align> struct Depends
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align)
Vector2d m;
float f;
};
template<typename T>
void check_unalignedassert_good()
{
T *x, *y;
x = new T;
delete x;
y = new T[2];
delete[] y;
}
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
template<typename T>
void construct_at_boundary(int boundary)
{
char buf[sizeof(T)+256];
size_t _buf = reinterpret_cast<internal::UIntPtr>(buf);
_buf += (EIGEN_MAX_ALIGN_BYTES - (_buf % EIGEN_MAX_ALIGN_BYTES)); // make 16/32/...-byte aligned
_buf += boundary; // make exact boundary-aligned
T *x = ::new(reinterpret_cast<void*>(_buf)) T;
x[0].setZero(); // just in order to silence warnings
x->~T();
}
#endif
void unalignedassert()
{
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
construct_at_boundary<Vector2f>(4);
construct_at_boundary<Vector3f>(4);
construct_at_boundary<Vector4f>(16);
construct_at_boundary<Vector6f>(4);
construct_at_boundary<Vector8f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector12f>(16);
construct_at_boundary<Matrix2f>(16);
construct_at_boundary<Matrix3f>(4);
construct_at_boundary<Matrix4f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2d>(16);
construct_at_boundary<Vector3d>(4);
construct_at_boundary<Vector4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector5d>(4);
construct_at_boundary<Vector6d>(16);
construct_at_boundary<Vector7d>(4);
construct_at_boundary<Vector8d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector9d>(4);
construct_at_boundary<Vector10d>(16);
construct_at_boundary<Vector12d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Matrix2d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Matrix3d>(4);
construct_at_boundary<Matrix4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2cf>(16);
construct_at_boundary<Vector3cf>(4);
construct_at_boundary<Vector2cd>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector3cd>(16);
#endif
check_unalignedassert_good<TestNew1>();
check_unalignedassert_good<TestNew2>();
check_unalignedassert_good<TestNew3>();
check_unalignedassert_good<TestNew4>();
check_unalignedassert_good<TestNew5>();
check_unalignedassert_good<TestNew6>();
check_unalignedassert_good<Depends<true> >();
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(EIGEN_MAX_ALIGN_BYTES>=16)
{
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector6d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector10d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12d>(8));
// Complexes are disabled because the compiler might aggressively vectorize
// the initialization of complex coeffs to 0 before we can check for alignedness
//VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cf>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4i>(8));
}
for(int b=8; b<EIGEN_MAX_ALIGN_BYTES; b+=8)
{
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(b));
if(b<64) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4f>(b));
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(b));
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2d>(b));
if(b<128) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4d>(b));
//if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cd>(b));
}
#endif
}
EIGEN_DECLARE_TEST(unalignedassert)
{
CALL_SUBTEST(unalignedassert());
}