// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2009 Jitse Niesen // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MATRIX_EXPONENTIAL #define EIGEN_MATRIX_EXPONENTIAL #ifdef _MSC_VER template Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); } #endif /** Compute the matrix exponential. * * \param M matrix whose exponential is to be computed. * \param result pointer to the matrix in which to store the result. * * The matrix exponential of \f$ M \f$ is defined by * \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f] * The matrix exponential can be used to solve linear ordinary * differential equations: the solution of \f$ y' = My \f$ with the * initial condition \f$ y(0) = y_0 \f$ is given by * \f$ y(t) = \exp(M) y_0 \f$. * * The cost of the computation is approximately \f$ 20 n^3 \f$ for * matrices of size \f$ n \f$. The number 20 depends weakly on the * norm of the matrix. * * The matrix exponential is computed using the scaling-and-squaring * method combined with Padé approximation. The matrix is first * rescaled, then the exponential of the reduced matrix is computed * approximant, and then the rescaling is undone by repeated * squaring. The degree of the Padé approximant is chosen such * that the approximation error is less than the round-off * error. However, errors may accumulate during the squaring phase. * * Details of the algorithm can be found in: Nicholas J. Higham, "The * scaling and squaring method for the matrix exponential revisited," * SIAM J. %Matrix Anal. Applic., 26:1179–1193, * 2005. * * \note Currently, \p M has to be a matrix of \c double . */ template void ei_matrix_exponential(const MatrixBase &M, typename ei_plain_matrix_type::type* result) { typedef typename ei_traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename ei_plain_matrix_type::type PlainMatrixType; ei_assert(M.rows() == M.cols()); EIGEN_STATIC_ASSERT(NumTraits::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT) PlainMatrixType num, den, U, V; PlainMatrixType Id = PlainMatrixType::Identity(M.rows(), M.cols()); typename ei_eval::type Meval = M.eval(); RealScalar l1norm = Meval.cwise().abs().colwise().sum().maxCoeff(); int squarings = 0; // Choose degree of Pade approximant, depending on norm of M if (l1norm < 1.495585217958292e-002) { // Use (3,3)-Pade const Scalar b[] = {120., 60., 12., 1.}; PlainMatrixType M2; M2 = (Meval * Meval).lazy(); num = b[3]*M2 + b[1]*Id; U = (Meval * num).lazy(); V = b[2]*M2 + b[0]*Id; } else if (l1norm < 2.539398330063230e-001) { // Use (5,5)-Pade const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.}; PlainMatrixType M2, M4; M2 = (Meval * Meval).lazy(); M4 = (M2 * M2).lazy(); num = b[5]*M4 + b[3]*M2 + b[1]*Id; U = (Meval * num).lazy(); V = b[4]*M4 + b[2]*M2 + b[0]*Id; } else if (l1norm < 9.504178996162932e-001) { // Use (7,7)-Pade const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; PlainMatrixType M2, M4, M6; M2 = (Meval * Meval).lazy(); M4 = (M2 * M2).lazy(); M6 = (M4 * M2).lazy(); num = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; U = (Meval * num).lazy(); V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; } else if (l1norm < 2.097847961257068e+000) { // Use (9,9)-Pade const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., 2162160., 110880., 3960., 90., 1.}; PlainMatrixType M2, M4, M6, M8; M2 = (Meval * Meval).lazy(); M4 = (M2 * M2).lazy(); M6 = (M4 * M2).lazy(); M8 = (M6 * M2).lazy(); num = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; U = (Meval * num).lazy(); V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; } else { // Use (13,13)-Pade; scale matrix by power of 2 so that its norm // is small enough const Scalar maxnorm = 5.371920351148152; const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., 1187353796428800., 129060195264000., 10559470521600., 670442572800., 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm))); PlainMatrixType A, A2, A4, A6; A = Meval / pow(Scalar(2), squarings); A2 = (A * A).lazy(); A4 = (A2 * A2).lazy(); A6 = (A4 * A2).lazy(); num = b[13]*A6 + b[11]*A4 + b[9]*A2; V = (A6 * num).lazy(); num = V + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*Id; U = (A * num).lazy(); num = b[12]*A6 + b[10]*A4 + b[8]*A2; V = (A6 * num).lazy() + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*Id; } num = U + V; // numerator of Pade approximant den = -U + V; // denominator of Pade approximant den.lu().solve(num, result); // Undo scaling by repeated squaring for (int i=0; i