173 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <iostream>
 | |
| #include "BenchTimer.h"
 | |
| #include <Eigen/Dense>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| #include <string>
 | |
| #include <sstream>
 | |
| using namespace Eigen;
 | |
| 
 | |
| std::map<std::string, Array<float, 1, 8, DontAlign | RowMajor> > results;
 | |
| std::vector<std::string> labels;
 | |
| std::vector<Array2i> sizes;
 | |
| 
 | |
| template <typename Solver, typename MatrixType>
 | |
| EIGEN_DONT_INLINE void compute_norm_equation(Solver &solver, const MatrixType &A) {
 | |
|   if (A.rows() != A.cols())
 | |
|     solver.compute(A.transpose() * A);
 | |
|   else
 | |
|     solver.compute(A);
 | |
| }
 | |
| 
 | |
| template <typename Solver, typename MatrixType>
 | |
| EIGEN_DONT_INLINE void compute(Solver &solver, const MatrixType &A) {
 | |
|   solver.compute(A);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Size>
 | |
| void bench(int id, int rows, int size = Size) {
 | |
|   typedef Matrix<Scalar, Dynamic, Size> Mat;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic> MatDyn;
 | |
|   typedef Matrix<Scalar, Size, Size> MatSquare;
 | |
|   Mat A(rows, size);
 | |
|   A.setRandom();
 | |
|   if (rows == size) A = A * A.adjoint();
 | |
|   BenchTimer t_llt, t_ldlt, t_lu, t_fplu, t_qr, t_cpqr, t_cod, t_fpqr, t_jsvd, t_bdcsvd;
 | |
| 
 | |
|   int tries = 5;
 | |
|   int rep = 1000 / size;
 | |
|   if (rep == 0) rep = 1;
 | |
|   //   rep = rep*rep;
 | |
| 
 | |
|   LLT<MatSquare> llt(size);
 | |
|   LDLT<MatSquare> ldlt(size);
 | |
|   PartialPivLU<MatSquare> lu(size);
 | |
|   FullPivLU<MatSquare> fplu(size, size);
 | |
|   HouseholderQR<Mat> qr(A.rows(), A.cols());
 | |
|   ColPivHouseholderQR<Mat> cpqr(A.rows(), A.cols());
 | |
|   CompleteOrthogonalDecomposition<Mat> cod(A.rows(), A.cols());
 | |
|   FullPivHouseholderQR<Mat> fpqr(A.rows(), A.cols());
 | |
|   JacobiSVD<MatDyn, ComputeThinU | ComputeThinV> jsvd(A.rows(), A.cols());
 | |
|   BDCSVD<MatDyn, ComputeThinU | ComputeThinV> bdcsvd(A.rows(), A.cols());
 | |
| 
 | |
|   BENCH(t_llt, tries, rep, compute_norm_equation(llt, A));
 | |
|   BENCH(t_ldlt, tries, rep, compute_norm_equation(ldlt, A));
 | |
|   BENCH(t_lu, tries, rep, compute_norm_equation(lu, A));
 | |
|   if (size <= 1000) BENCH(t_fplu, tries, rep, compute_norm_equation(fplu, A));
 | |
|   BENCH(t_qr, tries, rep, compute(qr, A));
 | |
|   BENCH(t_cpqr, tries, rep, compute(cpqr, A));
 | |
|   BENCH(t_cod, tries, rep, compute(cod, A));
 | |
|   if (size * rows <= 10000000) BENCH(t_fpqr, tries, rep, compute(fpqr, A));
 | |
|   if (size < 500)  // JacobiSVD is really too slow for too large matrices
 | |
|     BENCH(t_jsvd, tries, rep, jsvd.compute(A));
 | |
|   //   if(size*rows<=20000000)
 | |
|   BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A));
 | |
| 
 | |
|   results["LLT"][id] = t_llt.best();
 | |
|   results["LDLT"][id] = t_ldlt.best();
 | |
|   results["PartialPivLU"][id] = t_lu.best();
 | |
|   results["FullPivLU"][id] = t_fplu.best();
 | |
|   results["HouseholderQR"][id] = t_qr.best();
 | |
|   results["ColPivHouseholderQR"][id] = t_cpqr.best();
 | |
|   results["CompleteOrthogonalDecomposition"][id] = t_cod.best();
 | |
|   results["FullPivHouseholderQR"][id] = t_fpqr.best();
 | |
|   results["JacobiSVD"][id] = t_jsvd.best();
 | |
|   results["BDCSVD"][id] = t_bdcsvd.best();
 | |
| }
 | |
| 
 | |
| int main() {
 | |
|   labels.push_back("LLT");
 | |
|   labels.push_back("LDLT");
 | |
|   labels.push_back("PartialPivLU");
 | |
|   labels.push_back("FullPivLU");
 | |
|   labels.push_back("HouseholderQR");
 | |
|   labels.push_back("ColPivHouseholderQR");
 | |
|   labels.push_back("CompleteOrthogonalDecomposition");
 | |
|   labels.push_back("FullPivHouseholderQR");
 | |
|   labels.push_back("JacobiSVD");
 | |
|   labels.push_back("BDCSVD");
 | |
| 
 | |
|   for (int i = 0; i < labels.size(); ++i) results[labels[i]].fill(-1);
 | |
| 
 | |
|   const int small = 8;
 | |
|   sizes.push_back(Array2i(small, small));
 | |
|   sizes.push_back(Array2i(100, 100));
 | |
|   sizes.push_back(Array2i(1000, 1000));
 | |
|   sizes.push_back(Array2i(4000, 4000));
 | |
|   sizes.push_back(Array2i(10000, small));
 | |
|   sizes.push_back(Array2i(10000, 100));
 | |
|   sizes.push_back(Array2i(10000, 1000));
 | |
|   sizes.push_back(Array2i(10000, 4000));
 | |
| 
 | |
|   using namespace std;
 | |
| 
 | |
|   for (int k = 0; k < sizes.size(); ++k) {
 | |
|     cout << sizes[k](0) << "x" << sizes[k](1) << "...\n";
 | |
|     bench<float, Dynamic>(k, sizes[k](0), sizes[k](1));
 | |
|   }
 | |
| 
 | |
|   cout.width(32);
 | |
|   cout << "solver/size";
 | |
|   cout << "  ";
 | |
|   for (int k = 0; k < sizes.size(); ++k) {
 | |
|     std::stringstream ss;
 | |
|     ss << sizes[k](0) << "x" << sizes[k](1);
 | |
|     cout.width(10);
 | |
|     cout << ss.str();
 | |
|     cout << " ";
 | |
|   }
 | |
|   cout << endl;
 | |
| 
 | |
|   for (int i = 0; i < labels.size(); ++i) {
 | |
|     cout.width(32);
 | |
|     cout << labels[i];
 | |
|     cout << "  ";
 | |
|     ArrayXf r = (results[labels[i]] * 100000.f).floor() / 100.f;
 | |
|     for (int k = 0; k < sizes.size(); ++k) {
 | |
|       cout.width(10);
 | |
|       if (r(k) >= 1e6)
 | |
|         cout << "-";
 | |
|       else
 | |
|         cout << r(k);
 | |
|       cout << " ";
 | |
|     }
 | |
|     cout << endl;
 | |
|   }
 | |
| 
 | |
|   // HTML output
 | |
|   cout << "<table class=\"manual\">" << endl;
 | |
|   cout << "<tr><th>solver/size</th>" << endl;
 | |
|   for (int k = 0; k < sizes.size(); ++k) cout << "  <th>" << sizes[k](0) << "x" << sizes[k](1) << "</th>";
 | |
|   cout << "</tr>" << endl;
 | |
|   for (int i = 0; i < labels.size(); ++i) {
 | |
|     cout << "<tr";
 | |
|     if (i % 2 == 1) cout << " class=\"alt\"";
 | |
|     cout << "><td>" << labels[i] << "</td>";
 | |
|     ArrayXf r = (results[labels[i]] * 100000.f).floor() / 100.f;
 | |
|     for (int k = 0; k < sizes.size(); ++k) {
 | |
|       if (r(k) >= 1e6)
 | |
|         cout << "<td>-</td>";
 | |
|       else {
 | |
|         cout << "<td>" << r(k);
 | |
|         if (i > 0) cout << " (x" << numext::round(10.f * results[labels[i]](k) / results["LLT"](k)) / 10.f << ")";
 | |
|         if (i < 4 && sizes[k](0) != sizes[k](1)) cout << " <sup><a href=\"#note_ls\">*</a></sup>";
 | |
|         cout << "</td>";
 | |
|       }
 | |
|     }
 | |
|     cout << "</tr>" << endl;
 | |
|   }
 | |
|   cout << "</table>" << endl;
 | |
| 
 | |
|   //   cout << "LLT                             (ms)  " << (results["LLT"]*1000.).format(fmt) << "\n";
 | |
|   //   cout << "LDLT                             (%)  " << (results["LDLT"]/results["LLT"]).format(fmt) << "\n";
 | |
|   //   cout << "PartialPivLU                     (%)  " << (results["PartialPivLU"]/results["LLT"]).format(fmt) << "\n";
 | |
|   //   cout << "FullPivLU                        (%)  " << (results["FullPivLU"]/results["LLT"]).format(fmt) << "\n";
 | |
|   //   cout << "HouseholderQR                    (%)  " << (results["HouseholderQR"]/results["LLT"]).format(fmt) <<
 | |
|   //   "\n"; cout << "ColPivHouseholderQR              (%)  " <<
 | |
|   //   (results["ColPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n"; cout << "CompleteOrthogonalDecomposition (%)
 | |
|   //   " << (results["CompleteOrthogonalDecomposition"]/results["LLT"]).format(fmt) << "\n"; cout <<
 | |
|   //   "FullPivHouseholderQR             (%)  " << (results["FullPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
 | |
|   //   cout << "JacobiSVD                        (%)  " << (results["JacobiSVD"]/results["LLT"]).format(fmt) << "\n";
 | |
|   //   cout << "BDCSVD                           (%)  " << (results["BDCSVD"]/results["LLT"]).format(fmt) << "\n";
 | |
| }
 | 
