166 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| struct scalar_norm1_op {
 | |
|   typedef RealScalar result_type;
 | |
|   inline RealScalar operator()(const Scalar &a) const { return numext::norm1(a); }
 | |
| };
 | |
| namespace Eigen {
 | |
| namespace internal {
 | |
| template <>
 | |
| struct functor_traits<scalar_norm1_op> {
 | |
|   enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
 | |
| };
 | |
| }  // namespace internal
 | |
| }  // namespace Eigen
 | |
| 
 | |
| // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
 | |
| // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
 | |
| RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(asum))(int *n, RealScalar *px, int *incx) {
 | |
|   //   std::cerr << "__asum " << *n << " " << *incx << "\n";
 | |
|   Complex *x = reinterpret_cast<Complex *>(px);
 | |
| 
 | |
|   if (*n <= 0) return 0;
 | |
| 
 | |
|   if (*incx == 1)
 | |
|     return make_vector(x, *n).unaryExpr<scalar_norm1_op>().sum();
 | |
|   else
 | |
|     return make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
 | |
| }
 | |
| 
 | |
| int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx) {
 | |
|   if (*n <= 0) return 0;
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
| 
 | |
|   DenseIndex ret;
 | |
|   if (*incx == 1)
 | |
|     make_vector(x, *n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
 | |
|   else
 | |
|     make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
 | |
|   return int(ret) + 1;
 | |
| }
 | |
| 
 | |
| int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx) {
 | |
|   if (*n <= 0) return 0;
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
| 
 | |
|   DenseIndex ret;
 | |
|   if (*incx == 1)
 | |
|     make_vector(x, *n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
 | |
|   else
 | |
|     make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
 | |
|   return int(ret) + 1;
 | |
| }
 | |
| 
 | |
| // computes a dot product of a conjugated vector with another vector.
 | |
| int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
 | |
|   //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
 | |
|   Scalar *res = reinterpret_cast<Scalar *>(pres);
 | |
| 
 | |
|   if (*n <= 0) {
 | |
|     *res = Scalar(0);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
|   Scalar *y = reinterpret_cast<Scalar *>(py);
 | |
| 
 | |
|   if (*incx == 1 && *incy == 1)
 | |
|     *res = (make_vector(x, *n).dot(make_vector(y, *n)));
 | |
|   else if (*incx > 0 && *incy > 0)
 | |
|     *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy)));
 | |
|   else if (*incx < 0 && *incy > 0)
 | |
|     *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy)));
 | |
|   else if (*incx > 0 && *incy < 0)
 | |
|     *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse()));
 | |
|   else if (*incx < 0 && *incy < 0)
 | |
|     *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse()));
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // computes a vector-vector dot product without complex conjugation.
 | |
| int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
 | |
|   Scalar *res = reinterpret_cast<Scalar *>(pres);
 | |
| 
 | |
|   if (*n <= 0) {
 | |
|     *res = Scalar(0);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
|   Scalar *y = reinterpret_cast<Scalar *>(py);
 | |
| 
 | |
|   if (*incx == 1 && *incy == 1)
 | |
|     *res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum();
 | |
|   else if (*incx > 0 && *incy > 0)
 | |
|     *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum();
 | |
|   else if (*incx < 0 && *incy > 0)
 | |
|     *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum();
 | |
|   else if (*incx > 0 && *incy < 0)
 | |
|     *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
 | |
|   else if (*incx < 0 && *incy < 0)
 | |
|     *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(nrm2))(int *n, RealScalar *px, int *incx) {
 | |
|   //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
 | |
|   if (*n <= 0) return 0;
 | |
| 
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
| 
 | |
|   if (*incx == 1) return make_vector(x, *n).stableNorm();
 | |
| 
 | |
|   return make_vector(x, *n, *incx).stableNorm();
 | |
| }
 | |
| 
 | |
| int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy,
 | |
|                                                         RealScalar *pc, RealScalar *ps) {
 | |
|   if (*n <= 0) return 0;
 | |
| 
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
|   Scalar *y = reinterpret_cast<Scalar *>(py);
 | |
|   RealScalar c = *pc;
 | |
|   RealScalar s = *ps;
 | |
| 
 | |
|   StridedVectorType vx(make_vector(x, *n, std::abs(*incx)));
 | |
|   StridedVectorType vy(make_vector(y, *n, std::abs(*incy)));
 | |
| 
 | |
|   Reverse<StridedVectorType> rvx(vx);
 | |
|   Reverse<StridedVectorType> rvy(vy);
 | |
| 
 | |
|   // TODO implement mixed real-scalar rotations
 | |
|   if (*incx < 0 && *incy > 0)
 | |
|     internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c, s));
 | |
|   else if (*incx > 0 && *incy < 0)
 | |
|     internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c, s));
 | |
|   else
 | |
|     internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c, s));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
 | |
|   if (*n <= 0) return 0;
 | |
| 
 | |
|   Scalar *x = reinterpret_cast<Scalar *>(px);
 | |
|   RealScalar alpha = *palpha;
 | |
| 
 | |
|   //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
 | |
| 
 | |
|   if (*incx == 1)
 | |
|     make_vector(x, *n) *= alpha;
 | |
|   else
 | |
|     make_vector(x, *n, std::abs(*incx)) *= alpha;
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
