167 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
 | |
| #include "sparse_solver.h"
 | |
| 
 | |
| #if defined(DEBUG)
 | |
| #undef DEBUG
 | |
| #endif
 | |
| 
 | |
| #include <Eigen/AccelerateSupport>
 | |
| 
 | |
| template <typename MatrixType, typename DenseMat>
 | |
| int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   int rows = internal::random<int>(1, maxRows);
 | |
|   int cols = internal::random<int>(1, maxCols);
 | |
|   double density = (std::max)(8.0 / (rows * cols), 0.01);
 | |
| 
 | |
|   A.resize(rows, cols);
 | |
|   dA.resize(rows, cols);
 | |
|   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
 | |
|   A.makeCompressed();
 | |
|   return rows;
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, typename DenseMat>
 | |
| int generate_sparse_square_symmetric_problem(MatrixType& A, DenseMat& dA, int maxSize = 300) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   int rows = internal::random<int>(1, maxSize);
 | |
|   int cols = rows;
 | |
|   double density = (std::max)(8.0 / (rows * cols), 0.01);
 | |
| 
 | |
|   A.resize(rows, cols);
 | |
|   dA.resize(rows, cols);
 | |
|   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
 | |
|   dA = dA * dA.transpose();
 | |
|   A = A * A.transpose();
 | |
|   A.makeCompressed();
 | |
|   return rows;
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Solver>
 | |
| void test_accelerate_ldlt() {
 | |
|   typedef SparseMatrix<Scalar> MatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
| 
 | |
|   MatrixType A;
 | |
|   Matrix<Scalar, Dynamic, Dynamic> dA;
 | |
| 
 | |
|   generate_sparse_square_symmetric_problem(A, dA);
 | |
| 
 | |
|   DenseVector b = DenseVector::Random(A.rows());
 | |
| 
 | |
|   Solver solver;
 | |
|   solver.compute(A);
 | |
| 
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse LDLT factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DenseVector x = solver.solve(b);
 | |
| 
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse LDLT factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compare with a dense solver
 | |
|   DenseVector refX = dA.ldlt().solve(b);
 | |
|   VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Solver>
 | |
| void test_accelerate_llt() {
 | |
|   typedef SparseMatrix<Scalar> MatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
| 
 | |
|   MatrixType A;
 | |
|   Matrix<Scalar, Dynamic, Dynamic> dA;
 | |
| 
 | |
|   generate_sparse_square_symmetric_problem(A, dA);
 | |
| 
 | |
|   DenseVector b = DenseVector::Random(A.rows());
 | |
| 
 | |
|   Solver solver;
 | |
|   solver.compute(A);
 | |
| 
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse LLT factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DenseVector x = solver.solve(b);
 | |
| 
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse LLT factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compare with a dense solver
 | |
|   DenseVector refX = dA.llt().solve(b);
 | |
|   VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Solver>
 | |
| void test_accelerate_qr() {
 | |
|   typedef SparseMatrix<Scalar> MatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
| 
 | |
|   MatrixType A;
 | |
|   Matrix<Scalar, Dynamic, Dynamic> dA;
 | |
| 
 | |
|   generate_sparse_rectangular_problem(A, dA);
 | |
| 
 | |
|   DenseVector b = DenseVector::Random(A.rows());
 | |
| 
 | |
|   Solver solver;
 | |
|   solver.compute(A);
 | |
| 
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse QR factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DenseVector x = solver.solve(b);
 | |
| 
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse QR factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compare with a dense solver
 | |
|   DenseVector refX = dA.colPivHouseholderQr().solve(b);
 | |
|   VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void run_tests() {
 | |
|   typedef SparseMatrix<Scalar> MatrixType;
 | |
| 
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Lower> >();
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Lower> >();
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Lower> >();
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Lower> >();
 | |
| 
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Upper> >();
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Upper> >();
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Upper> >();
 | |
|   test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Upper> >();
 | |
| 
 | |
|   test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Lower> >();
 | |
| 
 | |
|   test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Upper> >();
 | |
| 
 | |
|   test_accelerate_qr<Scalar, AccelerateQR<MatrixType> >();
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(accelerate_support) {
 | |
|   CALL_SUBTEST_1(run_tests<float>());
 | |
|   CALL_SUBTEST_2(run_tests<double>());
 | |
| }
 | 
