200 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void reverse(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do
 | |
|   // to test it, hence I consider that we will have tested Random.h
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2;
 | |
|   VectorType v1 = VectorType::Random(rows);
 | |
| 
 | |
|   MatrixType m1_r = m1.reverse();
 | |
|   // Verify that MatrixBase::reverse() works
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Reverse<MatrixType> m1_rd(m1);
 | |
|   // Verify that a Reverse default (in both directions) of an expression works
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Reverse<MatrixType, BothDirections> m1_rb(m1);
 | |
|   // Verify that a Reverse in both directions of an expression works
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Reverse<MatrixType, Vertical> m1_rv(m1);
 | |
|   // Verify that a Reverse in the vertical directions of an expression works
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Reverse<MatrixType, Horizontal> m1_rh(m1);
 | |
|   // Verify that a Reverse in the horizontal directions of an expression works
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VectorType v1_r = v1.reverse();
 | |
|   // Verify that a VectorType::reverse() of an expression works
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
 | |
|   }
 | |
| 
 | |
|   MatrixType m1_cr = m1.colwise().reverse();
 | |
|   // Verify that PartialRedux::reverse() works (for colwise())
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MatrixType m1_rr = m1.rowwise().reverse();
 | |
|   // Verify that PartialRedux::reverse() works (for rowwise())
 | |
|   for (int i = 0; i < rows; i++) {
 | |
|     for (int j = 0; j < cols; j++) {
 | |
|       VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Scalar x = internal::random<Scalar>();
 | |
| 
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   m1.reverse()(r, c) = x;
 | |
|   VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.reverseInPlace();
 | |
|   VERIFY_IS_APPROX(m2, m1.reverse().eval());
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.col(0).reverseInPlace();
 | |
|   VERIFY_IS_APPROX(m2.col(0), m1.col(0).reverse().eval());
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.row(0).reverseInPlace();
 | |
|   VERIFY_IS_APPROX(m2.row(0), m1.row(0).reverse().eval());
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise().reverseInPlace();
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.colwise().reverseInPlace();
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise().reverse().eval());
 | |
| 
 | |
|   m1.colwise().reverse()(r, c) = x;
 | |
|   VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));
 | |
| 
 | |
|   m1.rowwise().reverse()(r, c) = x;
 | |
|   VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void array_reverse_extra() {
 | |
|   Vector4f x;
 | |
|   x << 1, 2, 3, 4;
 | |
|   Vector4f y;
 | |
|   y << 4, 3, 2, 1;
 | |
|   VERIFY(x.reverse()[1] == 3);
 | |
|   VERIFY(x.reverse() == y);
 | |
| }
 | |
| 
 | |
| // Simpler version of reverseInPlace leveraging a bug
 | |
| // in clang 6/7 with -O2 and AVX or AVX512 enabled.
 | |
| // This simpler version ensure that the clang bug is not simply hidden
 | |
| // through mis-inlining of reverseInPlace or other minor changes.
 | |
| template <typename MatrixType>
 | |
| EIGEN_DONT_INLINE void bug1684_job1(MatrixType& m1, MatrixType& m2) {
 | |
|   m2 = m1;
 | |
|   m2.col(0).swap(m2.col(3));
 | |
|   m2.col(1).swap(m2.col(2));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| EIGEN_DONT_INLINE void bug1684_job2(MatrixType& m1, MatrixType& m2) {
 | |
|   m2 = m1;                // load m1/m2 in AVX registers
 | |
|   m1.col(0) = m2.col(3);  // perform 128 bits moves
 | |
|   m1.col(1) = m2.col(2);
 | |
|   m1.col(2) = m2.col(1);
 | |
|   m1.col(3) = m2.col(0);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| EIGEN_DONT_INLINE void bug1684_job3(MatrixType& m1, MatrixType& m2) {
 | |
|   m2 = m1;
 | |
|   Vector4f tmp;
 | |
|   tmp = m2.col(0);
 | |
|   m2.col(0) = m2.col(3);
 | |
|   m2.col(3) = tmp;
 | |
|   tmp = m2.col(1);
 | |
|   m2.col(1) = m2.col(2);
 | |
|   m2.col(2) = tmp;
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug1684() {
 | |
|   Matrix4f m1 = Matrix4f::Random();
 | |
|   Matrix4f m2 = Matrix4f::Random();
 | |
|   bug1684_job1(m1, m2);
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
 | |
|   bug1684_job2(m1, m2);
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
 | |
|   // This one still fail after our swap's workaround,
 | |
|   // but I expect users not to implement their own swap.
 | |
|   // bug1684_job3(m1,m2);
 | |
|   // VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(array_reverse) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(reverse(Matrix<float, 1, 1>()));
 | |
|     CALL_SUBTEST_2(reverse(Matrix2f()));
 | |
|     CALL_SUBTEST_3(reverse(Matrix4f()));
 | |
|     CALL_SUBTEST_4(reverse(Matrix4d()));
 | |
|     CALL_SUBTEST_5(reverse(
 | |
|         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_6(reverse(
 | |
|         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_7(reverse(
 | |
|         MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_8(reverse(Matrix<float, 100, 100>()));
 | |
|     CALL_SUBTEST_9(reverse(Matrix<float, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
 | |
|                                                                      internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_3(bug1684<0>());
 | |
|   }
 | |
|   CALL_SUBTEST_3(array_reverse_extra<0>());
 | |
| }
 | 
