353 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include "random_without_cast_overflow.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| std::enable_if_t<(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1), void> check_index(
 | |
|     const MatrixType& m) {
 | |
|   VERIFY_RAISES_ASSERT(m[0]);
 | |
|   VERIFY_RAISES_ASSERT((m + m)[0]);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| std::enable_if_t<!(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1), void> check_index(
 | |
|     const MatrixType& /*unused*/) {}
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void basicStuff(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do
 | |
|   // to test it, hence I consider that we will have tested Random.h
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols),
 | |
|              mzero = MatrixType::Zero(rows, cols),
 | |
|              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
 | |
|   VectorType v1 = VectorType::Random(rows), vzero = VectorType::Zero(rows);
 | |
|   SquareMatrixType sm1 = SquareMatrixType::Random(rows, rows), sm2(rows, rows);
 | |
| 
 | |
|   Scalar x = 0;
 | |
|   while (x == Scalar(0)) x = internal::random<Scalar>();
 | |
| 
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   m1.coeffRef(r, c) = x;
 | |
|   VERIFY_IS_APPROX(x, m1.coeff(r, c));
 | |
|   m1(r, c) = x;
 | |
|   VERIFY_IS_APPROX(x, m1(r, c));
 | |
|   v1.coeffRef(r) = x;
 | |
|   VERIFY_IS_APPROX(x, v1.coeff(r));
 | |
|   v1(r) = x;
 | |
|   VERIFY_IS_APPROX(x, v1(r));
 | |
|   v1[r] = x;
 | |
|   VERIFY_IS_APPROX(x, v1[r]);
 | |
| 
 | |
|   // test fetching with various index types.
 | |
|   Index r1 = internal::random<Index>(0, numext::mini(Index(127), rows - 1));
 | |
|   x = v1(static_cast<char>(r1));
 | |
|   x = v1(static_cast<signed char>(r1));
 | |
|   x = v1(static_cast<unsigned char>(r1));
 | |
|   x = v1(static_cast<signed short>(r1));
 | |
|   x = v1(static_cast<unsigned short>(r1));
 | |
|   x = v1(static_cast<signed int>(r1));
 | |
|   x = v1(static_cast<unsigned int>(r1));
 | |
|   x = v1(static_cast<signed long>(r1));
 | |
|   x = v1(static_cast<unsigned long>(r1));
 | |
|   if (sizeof(Index) >= sizeof(long long int)) x = v1(static_cast<long long int>(r1));
 | |
|   if (sizeof(Index) >= sizeof(unsigned long long int)) x = v1(static_cast<unsigned long long int>(r1));
 | |
| 
 | |
|   VERIFY_IS_APPROX(v1, v1);
 | |
|   VERIFY_IS_NOT_APPROX(v1, 2 * v1);
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(vzero, v1);
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(vzero, v1.squaredNorm());
 | |
|   VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
 | |
|   VERIFY_IS_APPROX(vzero, v1 - v1);
 | |
|   VERIFY_IS_APPROX(m1, m1);
 | |
|   VERIFY_IS_NOT_APPROX(m1, 2 * m1);
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(mzero, m1);
 | |
|   VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
 | |
|   VERIFY_IS_APPROX(mzero, m1 - m1);
 | |
| 
 | |
|   // always test operator() on each read-only expression class,
 | |
|   // in order to check const-qualifiers.
 | |
|   // indeed, if an expression class (here Zero) is meant to be read-only,
 | |
|   // hence has no _write() method, the corresponding MatrixBase method (here zero())
 | |
|   // should return a const-qualified object so that it is the const-qualified
 | |
|   // operator() that gets called, which in turn calls _read().
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols)(r, c), static_cast<Scalar>(1));
 | |
| 
 | |
|   // now test copying a row-vector into a (column-)vector and conversely.
 | |
|   square.col(r) = square.row(r).eval();
 | |
|   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
 | |
|   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
 | |
|   rv = square.row(r);
 | |
|   cv = square.col(r);
 | |
| 
 | |
|   VERIFY_IS_APPROX(rv, cv.transpose());
 | |
| 
 | |
|   if (cols != 1 && rows != 1 && MatrixType::SizeAtCompileTime != Dynamic) {
 | |
|     VERIFY_RAISES_ASSERT(m1 = (m2.block(0, 0, rows - 1, cols - 1)));
 | |
|   }
 | |
| 
 | |
|   if (cols != 1 && rows != 1) {
 | |
|     check_index(m1);
 | |
|   }
 | |
| 
 | |
|   VERIFY_IS_APPROX(m3 = m1, m1);
 | |
|   MatrixType m4;
 | |
|   VERIFY_IS_APPROX(m4 = m1, m1);
 | |
| 
 | |
|   m3.real() = m1.real();
 | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
 | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
 | |
| 
 | |
|   // check == / != operators
 | |
|   VERIFY(m1 == m1);
 | |
|   VERIFY(m1 != m2);
 | |
|   VERIFY(!(m1 == m2));
 | |
|   VERIFY(!(m1 != m1));
 | |
|   m1 = m2;
 | |
|   VERIFY(m1 == m2);
 | |
|   VERIFY(!(m1 != m2));
 | |
| 
 | |
|   // check automatic transposition
 | |
|   sm2.setZero();
 | |
|   for (Index i = 0; i < rows; ++i) sm2.col(i) = sm1.row(i);
 | |
|   VERIFY_IS_APPROX(sm2, sm1.transpose());
 | |
| 
 | |
|   sm2.setZero();
 | |
|   for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() = sm1.row(i);
 | |
|   VERIFY_IS_APPROX(sm2, sm1.transpose());
 | |
| 
 | |
|   sm2.setZero();
 | |
|   for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() += sm1.row(i);
 | |
|   VERIFY_IS_APPROX(sm2, sm1.transpose());
 | |
| 
 | |
|   sm2.setZero();
 | |
|   for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() -= sm1.row(i);
 | |
|   VERIFY_IS_APPROX(sm2, -sm1.transpose());
 | |
| 
 | |
|   // check ternary usage
 | |
|   {
 | |
|     bool b = internal::random<int>(0, 10) > 5;
 | |
|     m3 = b ? m1 : m2;
 | |
|     if (b)
 | |
|       VERIFY_IS_APPROX(m3, m1);
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m3, m2);
 | |
|     m3 = b ? -m1 : m2;
 | |
|     if (b)
 | |
|       VERIFY_IS_APPROX(m3, -m1);
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m3, m2);
 | |
|     m3 = b ? m1 : -m2;
 | |
|     if (b)
 | |
|       VERIFY_IS_APPROX(m3, m1);
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m3, -m2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void basicStuffComplex(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>();
 | |
| 
 | |
|   VERIFY(numext::real(s1) == numext::real_ref(s1));
 | |
|   VERIFY(numext::imag(s1) == numext::imag_ref(s1));
 | |
|   numext::real_ref(s1) = numext::real(s2);
 | |
|   numext::imag_ref(s1) = numext::imag(s2);
 | |
|   VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
 | |
|   // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
 | |
| 
 | |
|   RealMatrixType rm1 = RealMatrixType::Random(rows, cols), rm2 = RealMatrixType::Random(rows, cols);
 | |
|   MatrixType cm(rows, cols);
 | |
|   cm.real() = rm1;
 | |
|   cm.imag() = rm2;
 | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
 | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
 | |
|   rm1.setZero();
 | |
|   rm2.setZero();
 | |
|   rm1 = cm.real();
 | |
|   rm2 = cm.imag();
 | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
 | |
|   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
 | |
|   cm.real().setZero();
 | |
|   VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
 | |
|   VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
 | |
| }
 | |
| 
 | |
| template <typename SrcScalar, typename TgtScalar>
 | |
| struct casting_test {
 | |
|   static void run() {
 | |
|     Matrix<SrcScalar, 4, 4> m;
 | |
|     for (int i = 0; i < m.rows(); ++i) {
 | |
|       for (int j = 0; j < m.cols(); ++j) {
 | |
|         m(i, j) = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value();
 | |
|       }
 | |
|     }
 | |
|     Matrix<TgtScalar, 4, 4> n = m.template cast<TgtScalar>();
 | |
|     for (int i = 0; i < m.rows(); ++i) {
 | |
|       for (int j = 0; j < m.cols(); ++j) {
 | |
|         VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar, TgtScalar>(m(i, j))));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcScalar, typename EnableIf = void>
 | |
| struct casting_test_runner {
 | |
|   static void run() {
 | |
|     casting_test<SrcScalar, bool>::run();
 | |
|     casting_test<SrcScalar, int8_t>::run();
 | |
|     casting_test<SrcScalar, uint8_t>::run();
 | |
|     casting_test<SrcScalar, int16_t>::run();
 | |
|     casting_test<SrcScalar, uint16_t>::run();
 | |
|     casting_test<SrcScalar, int32_t>::run();
 | |
|     casting_test<SrcScalar, uint32_t>::run();
 | |
|     casting_test<SrcScalar, int64_t>::run();
 | |
|     casting_test<SrcScalar, uint64_t>::run();
 | |
|     casting_test<SrcScalar, half>::run();
 | |
|     casting_test<SrcScalar, bfloat16>::run();
 | |
|     casting_test<SrcScalar, float>::run();
 | |
|     casting_test<SrcScalar, double>::run();
 | |
|     casting_test<SrcScalar, std::complex<float>>::run();
 | |
|     casting_test<SrcScalar, std::complex<double>>::run();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcScalar>
 | |
| struct casting_test_runner<SrcScalar, std::enable_if_t<(NumTraits<SrcScalar>::IsComplex)>> {
 | |
|   static void run() {
 | |
|     // Only a few casts from std::complex<T> are defined.
 | |
|     casting_test<SrcScalar, half>::run();
 | |
|     casting_test<SrcScalar, bfloat16>::run();
 | |
|     casting_test<SrcScalar, std::complex<float>>::run();
 | |
|     casting_test<SrcScalar, std::complex<double>>::run();
 | |
|   }
 | |
| };
 | |
| 
 | |
| void casting_all() {
 | |
|   casting_test_runner<bool>::run();
 | |
|   casting_test_runner<int8_t>::run();
 | |
|   casting_test_runner<uint8_t>::run();
 | |
|   casting_test_runner<int16_t>::run();
 | |
|   casting_test_runner<uint16_t>::run();
 | |
|   casting_test_runner<int32_t>::run();
 | |
|   casting_test_runner<uint32_t>::run();
 | |
|   casting_test_runner<int64_t>::run();
 | |
|   casting_test_runner<uint64_t>::run();
 | |
|   casting_test_runner<half>::run();
 | |
|   casting_test_runner<bfloat16>::run();
 | |
|   casting_test_runner<float>::run();
 | |
|   casting_test_runner<double>::run();
 | |
|   casting_test_runner<std::complex<float>>::run();
 | |
|   casting_test_runner<std::complex<double>>::run();
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void fixedSizeMatrixConstruction() {
 | |
|   Scalar raw[4];
 | |
|   for (int k = 0; k < 4; ++k) raw[k] = internal::random<Scalar>();
 | |
| 
 | |
|   {
 | |
|     Matrix<Scalar, 4, 1> m(raw);
 | |
|     Array<Scalar, 4, 1> a(raw);
 | |
|     for (int k = 0; k < 4; ++k) VERIFY(m(k) == raw[k]);
 | |
|     for (int k = 0; k < 4; ++k) VERIFY(a(k) == raw[k]);
 | |
|     VERIFY_IS_EQUAL(m, (Matrix<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3])));
 | |
|     VERIFY((a == (Array<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3]))).all());
 | |
|   }
 | |
|   {
 | |
|     Matrix<Scalar, 3, 1> m(raw);
 | |
|     Array<Scalar, 3, 1> a(raw);
 | |
|     for (int k = 0; k < 3; ++k) VERIFY(m(k) == raw[k]);
 | |
|     for (int k = 0; k < 3; ++k) VERIFY(a(k) == raw[k]);
 | |
|     VERIFY_IS_EQUAL(m, (Matrix<Scalar, 3, 1>(raw[0], raw[1], raw[2])));
 | |
|     VERIFY((a == Array<Scalar, 3, 1>(raw[0], raw[1], raw[2])).all());
 | |
|   }
 | |
|   {
 | |
|     Matrix<Scalar, 2, 1> m(raw), m2((DenseIndex(raw[0])), (DenseIndex(raw[1])));
 | |
|     Array<Scalar, 2, 1> a(raw), a2((DenseIndex(raw[0])), (DenseIndex(raw[1])));
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(m(k) == raw[k]);
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(a(k) == raw[k]);
 | |
|     VERIFY_IS_EQUAL(m, (Matrix<Scalar, 2, 1>(raw[0], raw[1])));
 | |
|     VERIFY((a == Array<Scalar, 2, 1>(raw[0], raw[1])).all());
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
 | |
|   }
 | |
|   {
 | |
|     Matrix<Scalar, 1, 2> m(raw), m2((DenseIndex(raw[0])), (DenseIndex(raw[1]))), m3((int(raw[0])), (int(raw[1]))),
 | |
|         m4((float(raw[0])), (float(raw[1])));
 | |
|     Array<Scalar, 1, 2> a(raw), a2((DenseIndex(raw[0])), (DenseIndex(raw[1])));
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(m(k) == raw[k]);
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(a(k) == raw[k]);
 | |
|     VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 2>(raw[0], raw[1])));
 | |
|     VERIFY((a == Array<Scalar, 1, 2>(raw[0], raw[1])).all());
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
 | |
|     for (int k = 0; k < 2; ++k) VERIFY(m3(k) == int(raw[k]));
 | |
|     for (int k = 0; k < 2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
 | |
|   }
 | |
|   {
 | |
|     Matrix<Scalar, 1, 1> m(raw), m1(raw[0]), m2((DenseIndex(raw[0]))), m3((int(raw[0])));
 | |
|     Array<Scalar, 1, 1> a(raw), a1(raw[0]), a2((DenseIndex(raw[0])));
 | |
|     VERIFY(m(0) == raw[0]);
 | |
|     VERIFY(a(0) == raw[0]);
 | |
|     VERIFY(m1(0) == raw[0]);
 | |
|     VERIFY(a1(0) == raw[0]);
 | |
|     VERIFY(m2(0) == DenseIndex(raw[0]));
 | |
|     VERIFY(a2(0) == DenseIndex(raw[0]));
 | |
|     VERIFY(m3(0) == int(raw[0]));
 | |
|     VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 1>(raw[0])));
 | |
|     VERIFY((a == Array<Scalar, 1, 1>(raw[0])).all());
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(basicstuff) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(basicStuff(Matrix<float, 1, 1>()));
 | |
|     CALL_SUBTEST_2(basicStuff(Matrix4d()));
 | |
|     CALL_SUBTEST_3(basicStuff(
 | |
|         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_4(basicStuff(
 | |
|         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_5(basicStuff(
 | |
|         MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_6(basicStuff(Matrix<float, 100, 100>()));
 | |
|     CALL_SUBTEST_7(basicStuff(Matrix<long double, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
 | |
|                                                                     internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_8(casting_all());
 | |
| 
 | |
|     CALL_SUBTEST_3(basicStuffComplex(
 | |
|         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_5(basicStuffComplex(
 | |
|         MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
 | |
|   CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
 | |
| }
 | 
