173 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
 | |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <iomanip>
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/LevenbergMarquardt>
 | |
| using namespace std;
 | |
| using namespace Eigen;
 | |
| 
 | |
| template <typename Scalar>
 | |
| struct DenseLM : DenseFunctor<Scalar> {
 | |
|   typedef DenseFunctor<Scalar> Base;
 | |
|   typedef typename Base::JacobianType JacobianType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> VectorType;
 | |
| 
 | |
|   DenseLM(int n, int m) : DenseFunctor<Scalar>(n, m) {}
 | |
| 
 | |
|   VectorType model(const VectorType& uv, VectorType& x) {
 | |
|     VectorType y;  // Should change to use expression template
 | |
|     int m = Base::values();
 | |
|     int n = Base::inputs();
 | |
|     eigen_assert(uv.size() % 2 == 0);
 | |
|     eigen_assert(uv.size() == n);
 | |
|     eigen_assert(x.size() == m);
 | |
|     y.setZero(m);
 | |
|     int half = n / 2;
 | |
|     VectorBlock<const VectorType> u(uv, 0, half);
 | |
|     VectorBlock<const VectorType> v(uv, half, half);
 | |
|     for (int j = 0; j < m; j++) {
 | |
|       for (int i = 0; i < half; i++) y(j) += u(i) * std::exp(-(x(j) - i) * (x(j) - i) / (v(i) * v(i)));
 | |
|     }
 | |
|     return y;
 | |
|   }
 | |
|   void initPoints(VectorType& uv_ref, VectorType& x) {
 | |
|     m_x = x;
 | |
|     m_y = this->model(uv_ref, x);
 | |
|   }
 | |
| 
 | |
|   int operator()(const VectorType& uv, VectorType& fvec) {
 | |
|     int m = Base::values();
 | |
|     int n = Base::inputs();
 | |
|     eigen_assert(uv.size() % 2 == 0);
 | |
|     eigen_assert(uv.size() == n);
 | |
|     eigen_assert(fvec.size() == m);
 | |
|     int half = n / 2;
 | |
|     VectorBlock<const VectorType> u(uv, 0, half);
 | |
|     VectorBlock<const VectorType> v(uv, half, half);
 | |
|     for (int j = 0; j < m; j++) {
 | |
|       fvec(j) = m_y(j);
 | |
|       for (int i = 0; i < half; i++) {
 | |
|         fvec(j) -= u(i) * std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   int df(const VectorType& uv, JacobianType& fjac) {
 | |
|     int m = Base::values();
 | |
|     int n = Base::inputs();
 | |
|     eigen_assert(n == uv.size());
 | |
|     eigen_assert(fjac.rows() == m);
 | |
|     eigen_assert(fjac.cols() == n);
 | |
|     int half = n / 2;
 | |
|     VectorBlock<const VectorType> u(uv, 0, half);
 | |
|     VectorBlock<const VectorType> v(uv, half, half);
 | |
|     for (int j = 0; j < m; j++) {
 | |
|       for (int i = 0; i < half; i++) {
 | |
|         fjac.coeffRef(j, i) = -std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i)));
 | |
|         fjac.coeffRef(j, i + half) = -2. * u(i) * (m_x(j) - i) * (m_x(j) - i) / (std::pow(v(i), 3)) *
 | |
|                                      std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i)));
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   VectorType m_x, m_y;  // Data Points
 | |
| };
 | |
| 
 | |
| template <typename FunctorType, typename VectorType>
 | |
| int test_minimizeLM(FunctorType& functor, VectorType& uv) {
 | |
|   LevenbergMarquardt<FunctorType> lm(functor);
 | |
|   LevenbergMarquardtSpace::Status info;
 | |
| 
 | |
|   info = lm.minimize(uv);
 | |
| 
 | |
|   VERIFY_IS_EQUAL(info, 1);
 | |
|   // FIXME Check other parameters
 | |
|   return info;
 | |
| }
 | |
| 
 | |
| template <typename FunctorType, typename VectorType>
 | |
| int test_lmder(FunctorType& functor, VectorType& uv) {
 | |
|   typedef typename VectorType::Scalar Scalar;
 | |
|   LevenbergMarquardtSpace::Status info;
 | |
|   LevenbergMarquardt<FunctorType> lm(functor);
 | |
|   info = lm.lmder1(uv);
 | |
| 
 | |
|   VERIFY_IS_EQUAL(info, 1);
 | |
|   // FIXME Check other parameters
 | |
|   return info;
 | |
| }
 | |
| 
 | |
| template <typename FunctorType, typename VectorType>
 | |
| int test_minimizeSteps(FunctorType& functor, VectorType& uv) {
 | |
|   LevenbergMarquardtSpace::Status info;
 | |
|   LevenbergMarquardt<FunctorType> lm(functor);
 | |
|   info = lm.minimizeInit(uv);
 | |
|   if (info == LevenbergMarquardtSpace::ImproperInputParameters) return info;
 | |
|   do {
 | |
|     info = lm.minimizeOneStep(uv);
 | |
|   } while (info == LevenbergMarquardtSpace::Running);
 | |
| 
 | |
|   VERIFY_IS_EQUAL(info, 1);
 | |
|   // FIXME Check other parameters
 | |
|   return info;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_denseLM_T() {
 | |
|   typedef Matrix<T, Dynamic, 1> VectorType;
 | |
| 
 | |
|   int inputs = 10;
 | |
|   int values = 1000;
 | |
|   DenseLM<T> dense_gaussian(inputs, values);
 | |
|   VectorType uv(inputs), uv_ref(inputs);
 | |
|   VectorType x(values);
 | |
| 
 | |
|   // Generate the reference solution
 | |
|   uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3;
 | |
| 
 | |
|   // Generate the reference data points
 | |
|   x.setRandom();
 | |
|   x = 10 * x;
 | |
|   x.array() += 10;
 | |
|   dense_gaussian.initPoints(uv_ref, x);
 | |
| 
 | |
|   // Generate the initial parameters
 | |
|   VectorBlock<VectorType> u(uv, 0, inputs / 2);
 | |
|   VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2);
 | |
| 
 | |
|   // Solve the optimization problem
 | |
| 
 | |
|   // Solve in one go
 | |
|   u.setOnes();
 | |
|   v.setOnes();
 | |
|   test_minimizeLM(dense_gaussian, uv);
 | |
| 
 | |
|   // Solve until the machine precision
 | |
|   u.setOnes();
 | |
|   v.setOnes();
 | |
|   test_lmder(dense_gaussian, uv);
 | |
| 
 | |
|   // Solve step by step
 | |
|   v.setOnes();
 | |
|   u.setOnes();
 | |
|   test_minimizeSteps(dense_gaussian, uv);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(denseLM) {
 | |
|   CALL_SUBTEST_2(test_denseLM_T<double>());
 | |
| 
 | |
|   // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
 | |
| }
 | 
