170 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <limits>
 | |
| #include <Eigen/Eigenvalues>
 | |
| #include <Eigen/LU>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| bool find_pivot(typename MatrixType::Scalar tol, MatrixType& diffs, Index col = 0) {
 | |
|   bool match = diffs.diagonal().sum() <= tol;
 | |
|   if (match || col == diffs.cols()) {
 | |
|     return match;
 | |
|   } else {
 | |
|     Index n = diffs.cols();
 | |
|     std::vector<std::pair<Index, Index> > transpositions;
 | |
|     for (Index i = col; i < n; ++i) {
 | |
|       Index best_index(0);
 | |
|       if (diffs.col(col).segment(col, n - i).minCoeff(&best_index) > tol) break;
 | |
| 
 | |
|       best_index += col;
 | |
| 
 | |
|       diffs.row(col).swap(diffs.row(best_index));
 | |
|       if (find_pivot(tol, diffs, col + 1)) return true;
 | |
|       diffs.row(col).swap(diffs.row(best_index));
 | |
| 
 | |
|       // move current pivot to the end
 | |
|       diffs.row(n - (i - col) - 1).swap(diffs.row(best_index));
 | |
|       transpositions.push_back(std::pair<Index, Index>(n - (i - col) - 1, best_index));
 | |
|     }
 | |
|     // restore
 | |
|     for (Index k = transpositions.size() - 1; k >= 0; --k)
 | |
|       diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* Check that two column vectors are approximately equal up to permutations.
 | |
|  * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(),
 | |
|  * however this strategy is numerically inacurate because of numerical cancellation issues.
 | |
|  */
 | |
| template <typename VectorType>
 | |
| void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) {
 | |
|   typedef typename VectorType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
| 
 | |
|   VERIFY(vec1.cols() == 1);
 | |
|   VERIFY(vec2.cols() == 1);
 | |
|   VERIFY(vec1.rows() == vec2.rows());
 | |
| 
 | |
|   Index n = vec1.rows();
 | |
|   RealScalar tol = test_precision<RealScalar>() * test_precision<RealScalar>() *
 | |
|                    numext::maxi(vec1.squaredNorm(), vec2.squaredNorm());
 | |
|   Matrix<RealScalar, Dynamic, Dynamic> diffs =
 | |
|       (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2();
 | |
| 
 | |
|   VERIFY(find_pivot(tol, diffs));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void eigensolver(const MatrixType& m) {
 | |
|   /* this test covers the following files:
 | |
|      ComplexEigenSolver.h, and indirectly ComplexSchur.h
 | |
|   */
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows, cols);
 | |
|   MatrixType symmA = a.adjoint() * a;
 | |
| 
 | |
|   ComplexEigenSolver<MatrixType> ei0(symmA);
 | |
|   VERIFY_IS_EQUAL(ei0.info(), Success);
 | |
|   VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
 | |
| 
 | |
|   ComplexEigenSolver<MatrixType> ei1(a);
 | |
|   VERIFY_IS_EQUAL(ei1.info(), Success);
 | |
|   VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
 | |
|   // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
 | |
|   // another algorithm so results may differ slightly
 | |
|   verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
 | |
| 
 | |
|   ComplexEigenSolver<MatrixType> ei2;
 | |
|   ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
 | |
|   VERIFY_IS_EQUAL(ei2.info(), Success);
 | |
|   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
 | |
|   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
 | |
|   if (rows > 2) {
 | |
|     ei2.setMaxIterations(1).compute(a);
 | |
|     VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
 | |
|     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
 | |
|   }
 | |
| 
 | |
|   ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
 | |
|   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
 | |
|   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
 | |
| 
 | |
|   // Regression test for issue #66
 | |
|   MatrixType z = MatrixType::Zero(rows, cols);
 | |
|   ComplexEigenSolver<MatrixType> eiz(z);
 | |
|   VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
 | |
| 
 | |
|   MatrixType id = MatrixType::Identity(rows, cols);
 | |
|   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
 | |
| 
 | |
|   if (rows > 1 && rows < 20) {
 | |
|     // Test matrix with NaN
 | |
|     a(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
 | |
|     ComplexEigenSolver<MatrixType> eiNaN(a);
 | |
|     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 1098
 | |
|   {
 | |
|     ComplexEigenSolver<MatrixType> eig(a.adjoint() * a);
 | |
|     eig.compute(a.adjoint() * a);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 478
 | |
|   {
 | |
|     a.setZero();
 | |
|     ComplexEigenSolver<MatrixType> ei3(a);
 | |
|     VERIFY_IS_EQUAL(ei3.info(), Success);
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(), RealScalar(1));
 | |
|     VERIFY((ei3.eigenvectors().transpose() * ei3.eigenvectors().transpose()).eval().isIdentity());
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void eigensolver_verify_assert(const MatrixType& m) {
 | |
|   ComplexEigenSolver<MatrixType> eig;
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvalues());
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(m.rows(), m.cols());
 | |
|   eig.compute(a, false);
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(eigensolver_complex) {
 | |
|   int s = 0;
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(eigensolver(Matrix4cf()));
 | |
|     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
 | |
|     CALL_SUBTEST_2(eigensolver(MatrixXcd(s, s)));
 | |
|     CALL_SUBTEST_3(eigensolver(Matrix<std::complex<float>, 1, 1>()));
 | |
|     CALL_SUBTEST_4(eigensolver(Matrix3f()));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
|   }
 | |
|   CALL_SUBTEST_1(eigensolver_verify_assert(Matrix4cf()));
 | |
|   s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
 | |
|   CALL_SUBTEST_2(eigensolver_verify_assert(MatrixXcd(s, s)));
 | |
|   CALL_SUBTEST_3(eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()));
 | |
|   CALL_SUBTEST_4(eigensolver_verify_assert(Matrix3f()));
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s));
 | |
| 
 | |
|   TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| }
 | 
