140 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #define EIGEN_RUNTIME_NO_MALLOC
 | |
| #include "main.h"
 | |
| #include <limits>
 | |
| #include <Eigen/Eigenvalues>
 | |
| #include <Eigen/LU>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void generalized_eigensolver_real(const MatrixType& m) {
 | |
|   /* this test covers the following files:
 | |
|      GeneralizedEigenSolver.h
 | |
|   */
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef std::complex<Scalar> ComplexScalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows, cols);
 | |
|   MatrixType b = MatrixType::Random(rows, cols);
 | |
|   MatrixType a1 = MatrixType::Random(rows, cols);
 | |
|   MatrixType b1 = MatrixType::Random(rows, cols);
 | |
|   MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1;
 | |
|   MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
 | |
| 
 | |
|   // lets compare to GeneralizedSelfAdjointEigenSolver
 | |
|   {
 | |
|     GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
 | |
|     GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
 | |
| 
 | |
|     VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
 | |
| 
 | |
|     VectorType realEigenvalues = eig.eigenvalues().real();
 | |
|     std::sort(realEigenvalues.data(), realEigenvalues.data() + realEigenvalues.size());
 | |
|     VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
 | |
| 
 | |
|     // check eigenvectors
 | |
|     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
 | |
|     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
 | |
|     VERIFY_IS_APPROX(spdA * V, spdB * V * D);
 | |
|   }
 | |
| 
 | |
|   // non symmetric case:
 | |
|   {
 | |
|     GeneralizedEigenSolver<MatrixType> eig(rows);
 | |
|     // TODO enable full-prealocation of required memory, this probably requires an in-place mode for
 | |
|     // HessenbergDecomposition
 | |
|     // Eigen::internal::set_is_malloc_allowed(false);
 | |
|     eig.compute(a, b);
 | |
|     // Eigen::internal::set_is_malloc_allowed(true);
 | |
|     for (Index k = 0; k < cols; ++k) {
 | |
|       Matrix<ComplexScalar, Dynamic, Dynamic> tmp =
 | |
|           (eig.betas()(k) * a).template cast<ComplexScalar>() - eig.alphas()(k) * b;
 | |
|       if (tmp.size() > 1 && tmp.norm() > (std::numeric_limits<Scalar>::min)()) tmp /= tmp.norm();
 | |
|       VERIFY_IS_MUCH_SMALLER_THAN(std::abs(tmp.determinant()), Scalar(1));
 | |
|     }
 | |
|     // check eigenvectors
 | |
|     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
 | |
|     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
 | |
|     VERIFY_IS_APPROX(a * V, b * V * D);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 1098
 | |
|   {
 | |
|     GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a, b.adjoint() * b);
 | |
|     eig1.compute(a.adjoint() * a, b.adjoint() * b);
 | |
|     GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a, b.adjoint() * b);
 | |
|     eig2.compute(a.adjoint() * a, b.adjoint() * b);
 | |
|   }
 | |
| 
 | |
|   // check without eigenvectors
 | |
|   {
 | |
|     GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true);
 | |
|     GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false);
 | |
|     VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void generalized_eigensolver_assert() {
 | |
|   GeneralizedEigenSolver<MatrixType> eig;
 | |
|   // all raise assert if uninitialized
 | |
|   VERIFY_RAISES_ASSERT(eig.info());
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvalues());
 | |
|   VERIFY_RAISES_ASSERT(eig.alphas());
 | |
|   VERIFY_RAISES_ASSERT(eig.betas());
 | |
| 
 | |
|   // none raise assert after compute called
 | |
|   eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20));
 | |
|   VERIFY(eig.info() == Success);
 | |
|   eig.eigenvectors();
 | |
|   eig.eigenvalues();
 | |
|   eig.alphas();
 | |
|   eig.betas();
 | |
| 
 | |
|   // eigenvectors() raises assert, if eigenvectors were not requested
 | |
|   eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20), false);
 | |
|   VERIFY(eig.info() == Success);
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
|   eig.eigenvalues();
 | |
|   eig.alphas();
 | |
|   eig.betas();
 | |
| 
 | |
|   // all except info raise assert if realQZ did not converge
 | |
|   eig.setMaxIterations(0);  // force real QZ to fail.
 | |
|   eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20));
 | |
|   VERIFY(eig.info() == NoConvergence);
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvalues());
 | |
|   VERIFY_RAISES_ASSERT(eig.alphas());
 | |
|   VERIFY_RAISES_ASSERT(eig.betas());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(eigensolver_generalized_real) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     int s = 0;
 | |
|     CALL_SUBTEST_1(generalized_eigensolver_real(Matrix4f()));
 | |
|     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
 | |
|     CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(s, s)));
 | |
| 
 | |
|     // some trivial but implementation-wise special cases
 | |
|     CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(1, 1)));
 | |
|     CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(2, 2)));
 | |
|     CALL_SUBTEST_3(generalized_eigensolver_real(Matrix<double, 1, 1>()));
 | |
|     CALL_SUBTEST_4(generalized_eigensolver_real(Matrix2d()));
 | |
|     CALL_SUBTEST_5(generalized_eigensolver_assert<MatrixXd>());
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
|   }
 | |
| }
 | 
