518 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			518 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/Geometry>
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| // NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
 | |
| // It seems that it is not needed anymore, but let's keep it here, just in case...
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE void kill_extra_precision(T& /* x */) {
 | |
|   // This one worked but triggered a warning:
 | |
|   /* eigen_assert((void*)(&x) != (void*)0); */
 | |
|   // An alternative could be:
 | |
|   /* volatile T tmp = x; */
 | |
|   /* x = tmp; */
 | |
| }
 | |
| 
 | |
| template <typename BoxType>
 | |
| void alignedbox(const BoxType& box) {
 | |
|   /* this test covers the following files:
 | |
|      AlignedBox.h
 | |
|   */
 | |
|   typedef typename BoxType::Scalar Scalar;
 | |
|   typedef NumTraits<Scalar> ScalarTraits;
 | |
|   typedef typename ScalarTraits::Real RealScalar;
 | |
|   typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
 | |
| 
 | |
|   const Index dim = box.dim();
 | |
| 
 | |
|   VectorType p0 = VectorType::Random(dim);
 | |
|   VectorType p1 = VectorType::Random(dim);
 | |
|   while (p1 == p0) {
 | |
|     p1 = VectorType::Random(dim);
 | |
|   }
 | |
|   RealScalar s1 = internal::random<RealScalar>(0, 1);
 | |
| 
 | |
|   BoxType b0(dim);
 | |
|   BoxType b1(VectorType::Random(dim), VectorType::Random(dim));
 | |
|   BoxType b2;
 | |
| 
 | |
|   kill_extra_precision(b1);
 | |
|   kill_extra_precision(p0);
 | |
|   kill_extra_precision(p1);
 | |
| 
 | |
|   b0.extend(p0);
 | |
|   b0.extend(p1);
 | |
|   VERIFY(b0.contains(p0 * s1 + (Scalar(1) - s1) * p1));
 | |
|   VERIFY(b0.contains(b0.center()));
 | |
|   VERIFY_IS_APPROX(b0.center(), (p0 + p1) / Scalar(2));
 | |
| 
 | |
|   (b2 = b0).extend(b1);
 | |
|   VERIFY(b2.contains(b0));
 | |
|   VERIFY(b2.contains(b1));
 | |
|   VERIFY_IS_APPROX(b2.clamp(b0), b0);
 | |
| 
 | |
|   // intersection
 | |
|   BoxType box1(VectorType::Random(dim));
 | |
|   box1.extend(VectorType::Random(dim));
 | |
|   BoxType box2(VectorType::Random(dim));
 | |
|   box2.extend(VectorType::Random(dim));
 | |
| 
 | |
|   VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
 | |
| 
 | |
|   // alignment -- make sure there is no memory alignment assertion
 | |
|   BoxType* bp0 = new BoxType(dim);
 | |
|   BoxType* bp1 = new BoxType(dim);
 | |
|   bp0->extend(*bp1);
 | |
|   delete bp0;
 | |
|   delete bp1;
 | |
| 
 | |
|   // sampling
 | |
|   for (int i = 0; i < 10; ++i) {
 | |
|     VectorType r = b0.sample();
 | |
|     VERIFY(b0.contains(r));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename BoxType>
 | |
| void alignedboxTranslatable(const BoxType& box) {
 | |
|   typedef typename BoxType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
 | |
|   typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
 | |
|   typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
 | |
| 
 | |
|   alignedbox(box);
 | |
| 
 | |
|   const VectorType Ones = VectorType::Ones();
 | |
|   const VectorType UnitX = VectorType::UnitX();
 | |
|   const Index dim = box.dim();
 | |
| 
 | |
|   // box((-1, -1, -1), (1, 1, 1))
 | |
|   BoxType a(-Ones, Ones);
 | |
| 
 | |
|   VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));
 | |
| 
 | |
|   BoxType b = a;
 | |
|   VectorType translate = Ones;
 | |
|   translate[0] = Scalar(2);
 | |
|   b.translate(translate);
 | |
|   // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))
 | |
| 
 | |
|   VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));
 | |
|   VERIFY_IS_APPROX((b.min)(), UnitX);
 | |
|   VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);
 | |
| 
 | |
|   // Test transform
 | |
| 
 | |
|   IsometryTransform tf = IsometryTransform::Identity();
 | |
|   tf.translation() = -translate;
 | |
| 
 | |
|   BoxType c = b.transformed(tf);
 | |
|   // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))
 | |
|   VERIFY_IS_APPROX(c.sizes(), a.sizes());
 | |
|   VERIFY_IS_APPROX((c.min)(), (a.min)());
 | |
|   VERIFY_IS_APPROX((c.max)(), (a.max)());
 | |
| 
 | |
|   c.transform(tf);
 | |
|   // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))
 | |
|   VERIFY_IS_APPROX(c.sizes(), a.sizes());
 | |
|   VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);
 | |
|   VERIFY_IS_APPROX((c.max)(), -UnitX);
 | |
| 
 | |
|   // Scaling
 | |
| 
 | |
|   AffineTransform atf = AffineTransform::Identity();
 | |
|   atf.scale(Scalar(3));
 | |
|   c.transform(atf);
 | |
|   // scale by 3 -> box((-9, -6, -6), (-3, 0, 0))
 | |
|   VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());
 | |
|   VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));
 | |
|   VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));
 | |
| 
 | |
|   atf = AffineTransform::Identity();
 | |
|   atf.scale(Scalar(-3));
 | |
|   c.transform(atf);
 | |
|   // scale by -3 -> box((27, 18, 18), (9, 0, 0))
 | |
|   VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());
 | |
|   VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));
 | |
|   VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));
 | |
| 
 | |
|   // Check identity transform within numerical precision.
 | |
|   BoxType transformedC = c.transformed(IsometryTransform::Identity());
 | |
|   VERIFY_IS_APPROX(transformedC, c);
 | |
| 
 | |
|   for (size_t i = 0; i < 10; ++i) {
 | |
|     VectorType minCorner;
 | |
|     VectorType maxCorner;
 | |
|     for (Index d = 0; d < dim; ++d) {
 | |
|       minCorner[d] = internal::random<Scalar>(-10, 10);
 | |
|       maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
 | |
|     }
 | |
| 
 | |
|     c = BoxType(minCorner, maxCorner);
 | |
| 
 | |
|     translate = VectorType::Random();
 | |
|     c.translate(translate);
 | |
| 
 | |
|     VERIFY_IS_APPROX((c.min)(), minCorner + translate);
 | |
|     VERIFY_IS_APPROX((c.max)(), maxCorner + translate);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Rotation>
 | |
| Rotation rotate2D(Scalar angle) {
 | |
|   return Rotation2D<Scalar>(angle);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Rotation>
 | |
| Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) {
 | |
|   typedef typename NumTraits<Scalar>::NonInteger NonInteger;
 | |
|   return Rotation2D<NonInteger>(angle).toRotationMatrix().template cast<Scalar>();
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Rotation>
 | |
| Rotation rotate3DZAxis(Scalar angle) {
 | |
|   return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1));
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Rotation>
 | |
| Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) {
 | |
|   typedef typename NumTraits<Scalar>::NonInteger NonInteger;
 | |
|   return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).toRotationMatrix().template cast<Scalar>();
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Rotation>
 | |
| Rotation rotate4DZWAxis(Scalar angle) {
 | |
|   Rotation result = Matrix<Scalar, 4, 4>::Identity();
 | |
|   result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix();
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| MatrixType randomRotationMatrix() {
 | |
|   // algorithm from
 | |
|   // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
 | |
|   const MatrixType rand = MatrixType::Random();
 | |
|   const MatrixType q = rand.householderQr().householderQ();
 | |
|   const JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(q);
 | |
|   const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
 | |
|   MatrixType diag = rand.Identity();
 | |
|   diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
 | |
|   const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();
 | |
|   return rotation;
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Dim>
 | |
| Matrix<Scalar, Dim, (1 << Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_) {
 | |
|   Matrix<Scalar, Dim, (1 << Dim)> result;
 | |
|   for (Index i = 0; i < (1 << Dim); ++i) {
 | |
|     for (Index j = 0; j < Dim; ++j) result(j, i) = (i & (1 << j)) ? min_(j) : max_(j);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <typename BoxType, typename Rotation>
 | |
| void alignedboxRotatable(const BoxType& box,
 | |
|                          Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)) {
 | |
|   alignedboxTranslatable(box);
 | |
| 
 | |
|   typedef typename BoxType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::NonInteger NonInteger;
 | |
|   typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
 | |
|   typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
 | |
|   typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
 | |
| 
 | |
|   const VectorType Zero = VectorType::Zero();
 | |
|   const VectorType Ones = VectorType::Ones();
 | |
|   const VectorType UnitX = VectorType::UnitX();
 | |
|   const VectorType UnitY = VectorType::UnitY();
 | |
|   // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
 | |
|   const VectorType UnitZ = Ones - UnitX - UnitY;
 | |
| 
 | |
|   // in this kind of comments the 3D case values will be illustrated
 | |
|   // box((-1, -1, -1), (1, 1, 1))
 | |
|   BoxType a(-Ones, Ones);
 | |
| 
 | |
|   // to allow templating this test for both 2D and 3D cases, we always set all
 | |
|   // but the first coordinate to the same value; so basically 3D case works as
 | |
|   // if you were looking at the scene from top
 | |
| 
 | |
|   VectorType minPoint = -2 * Ones;
 | |
|   minPoint[0] = -3;
 | |
|   VectorType maxPoint = Zero;
 | |
|   maxPoint[0] = -1;
 | |
|   BoxType c(minPoint, maxPoint);
 | |
|   // box((-3, -2, -2), (-1, 0, 0))
 | |
| 
 | |
|   IsometryTransform tf2 = IsometryTransform::Identity();
 | |
|   // for some weird reason the following statement has to be put separate from
 | |
|   // the following rotate call, otherwise precision problems arise...
 | |
|   Rotation rot = rotate(NonInteger(EIGEN_PI));
 | |
|   tf2.rotate(rot);
 | |
| 
 | |
|   c.transform(tf2);
 | |
|   // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))
 | |
| 
 | |
|   VERIFY_IS_APPROX(c.sizes(), a.sizes());
 | |
|   VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));
 | |
|   VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));
 | |
| 
 | |
|   rot = rotate(NonInteger(EIGEN_PI / 2));
 | |
|   tf2.setIdentity();
 | |
|   tf2.rotate(rot);
 | |
| 
 | |
|   c.transform(tf2);
 | |
|   // rotate by 90 deg around origin ->  box((-2, 1, -2), (0, 3, 0))
 | |
| 
 | |
|   VERIFY_IS_APPROX(c.sizes(), a.sizes());
 | |
|   VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));
 | |
|   VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));
 | |
| 
 | |
|   // box((-1, -1, -1), (1, 1, 1))
 | |
|   AffineTransform atf = AffineTransform::Identity();
 | |
|   atf.linearExt()(0, 1) = Scalar(1);
 | |
|   c = BoxType(-Ones, Ones);
 | |
|   c.transform(atf);
 | |
|   // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))
 | |
| 
 | |
|   VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));
 | |
|   VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);
 | |
|   VERIFY_IS_APPROX((c.max)(), Ones + UnitX);
 | |
| }
 | |
| 
 | |
| template <typename BoxType, typename Rotation>
 | |
| void alignedboxNonIntegralRotatable(
 | |
|     const BoxType& box, Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)) {
 | |
|   alignedboxRotatable(box, rotate);
 | |
| 
 | |
|   typedef typename BoxType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::NonInteger NonInteger;
 | |
|   enum { Dim = BoxType::AmbientDimAtCompileTime };
 | |
|   typedef Matrix<Scalar, Dim, 1> VectorType;
 | |
|   typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType;
 | |
|   typedef Transform<Scalar, Dim, Isometry> IsometryTransform;
 | |
|   typedef Transform<Scalar, Dim, Affine> AffineTransform;
 | |
| 
 | |
|   const Index dim = box.dim();
 | |
|   const VectorType Zero = VectorType::Zero();
 | |
|   const VectorType Ones = VectorType::Ones();
 | |
| 
 | |
|   VectorType minPoint = -2 * Ones;
 | |
|   minPoint[1] = 1;
 | |
|   VectorType maxPoint = Zero;
 | |
|   maxPoint[1] = 3;
 | |
|   BoxType c(minPoint, maxPoint);
 | |
|   // ((-2, 1, -2), (0, 3, 0))
 | |
| 
 | |
|   VectorType cornerBL = (c.min)();
 | |
|   VectorType cornerTR = (c.max)();
 | |
|   VectorType cornerBR = (c.min)();
 | |
|   cornerBR[0] = cornerTR[0];
 | |
|   VectorType cornerTL = (c.max)();
 | |
|   cornerTL[0] = cornerBL[0];
 | |
| 
 | |
|   NonInteger angle = NonInteger(EIGEN_PI / 3);
 | |
|   Rotation rot = rotate(angle);
 | |
|   IsometryTransform tf2;
 | |
|   tf2.setIdentity();
 | |
|   tf2.rotate(rot);
 | |
| 
 | |
|   c.transform(tf2);
 | |
|   // rotate by 60 deg ->  box((-3.59, -1.23, -2), (-0.86, 1.5, 0))
 | |
| 
 | |
|   cornerBL = tf2 * cornerBL;
 | |
|   cornerBR = tf2 * cornerBR;
 | |
|   cornerTL = tf2 * cornerTL;
 | |
|   cornerTR = tf2 * cornerTR;
 | |
| 
 | |
|   VectorType minCorner = Ones * Scalar(-2);
 | |
|   VectorType maxCorner = Zero;
 | |
|   minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));
 | |
|   maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));
 | |
|   minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));
 | |
|   maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));
 | |
| 
 | |
|   for (Index d = 2; d < dim; ++d) VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));
 | |
| 
 | |
|   VERIFY_IS_APPROX((c.min)(), minCorner);
 | |
|   VERIFY_IS_APPROX((c.max)(), maxCorner);
 | |
| 
 | |
|   VectorType minCornerValue = Ones * Scalar(-2);
 | |
|   VectorType maxCornerValue = Zero;
 | |
|   minCornerValue[0] = Scalar(Scalar(-sqrt(2 * 2 + 3 * 3)) * Scalar(cos(Scalar(atan(2.0 / 3.0)) - angle / 2)));
 | |
|   minCornerValue[1] = Scalar(Scalar(-sqrt(1 * 1 + 2 * 2)) * Scalar(sin(Scalar(atan(2.0 / 1.0)) - angle / 2)));
 | |
|   maxCornerValue[0] = Scalar(-sin(angle));
 | |
|   maxCornerValue[1] = Scalar(3 * cos(angle));
 | |
|   VERIFY_IS_APPROX((c.min)(), minCornerValue);
 | |
|   VERIFY_IS_APPROX((c.max)(), maxCornerValue);
 | |
| 
 | |
|   // randomized test - translate and rotate the box and compare to a box made of transformed vertices
 | |
|   for (size_t i = 0; i < 10; ++i) {
 | |
|     for (Index d = 0; d < dim; ++d) {
 | |
|       minCorner[d] = internal::random<Scalar>(-10, 10);
 | |
|       maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
 | |
|     }
 | |
| 
 | |
|     c = BoxType(minCorner, maxCorner);
 | |
| 
 | |
|     CornersType corners = boxGetCorners(minCorner, maxCorner);
 | |
| 
 | |
|     typename AffineTransform::LinearMatrixType rotation =
 | |
|         randomRotationMatrix<typename AffineTransform::LinearMatrixType>();
 | |
| 
 | |
|     tf2.setIdentity();
 | |
|     tf2.rotate(rotation);
 | |
|     tf2.translate(VectorType::Random());
 | |
| 
 | |
|     c.transform(tf2);
 | |
|     corners = tf2 * corners;
 | |
| 
 | |
|     minCorner = corners.rowwise().minCoeff();
 | |
|     maxCorner = corners.rowwise().maxCoeff();
 | |
| 
 | |
|     VERIFY_IS_APPROX((c.min)(), minCorner);
 | |
|     VERIFY_IS_APPROX((c.max)(), maxCorner);
 | |
|   }
 | |
| 
 | |
|   // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices
 | |
|   for (size_t i = 0; i < 10; ++i) {
 | |
|     for (Index d = 0; d < dim; ++d) {
 | |
|       minCorner[d] = internal::random<Scalar>(-10, 10);
 | |
|       maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
 | |
|     }
 | |
| 
 | |
|     c = BoxType(minCorner, maxCorner);
 | |
| 
 | |
|     CornersType corners = boxGetCorners(minCorner, maxCorner);
 | |
| 
 | |
|     AffineTransform atf = AffineTransform::Identity();
 | |
|     atf.linearExt() = AffineTransform::LinearPart::Random();
 | |
|     atf.translate(VectorType::Random());
 | |
| 
 | |
|     c.transform(atf);
 | |
|     corners = atf * corners;
 | |
| 
 | |
|     minCorner = corners.rowwise().minCoeff();
 | |
|     maxCorner = corners.rowwise().maxCoeff();
 | |
| 
 | |
|     VERIFY_IS_APPROX((c.min)(), minCorner);
 | |
|     VERIFY_IS_APPROX((c.max)(), maxCorner);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename BoxType>
 | |
| void alignedboxCastTests(const BoxType& box) {
 | |
|   // casting
 | |
|   typedef typename BoxType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
 | |
| 
 | |
|   const Index dim = box.dim();
 | |
| 
 | |
|   VectorType p0 = VectorType::Random(dim);
 | |
|   VectorType p1 = VectorType::Random(dim);
 | |
| 
 | |
|   BoxType b0(dim);
 | |
| 
 | |
|   b0.extend(p0);
 | |
|   b0.extend(p1);
 | |
| 
 | |
|   const int Dim = BoxType::AmbientDimAtCompileTime;
 | |
|   typedef typename GetDifferentType<Scalar>::type OtherScalar;
 | |
|   AlignedBox<OtherScalar, Dim> hp1f = b0.template cast<OtherScalar>();
 | |
|   VERIFY_IS_APPROX(hp1f.template cast<Scalar>(), b0);
 | |
|   AlignedBox<Scalar, Dim> hp1d = b0.template cast<Scalar>();
 | |
|   VERIFY_IS_APPROX(hp1d.template cast<Scalar>(), b0);
 | |
| }
 | |
| 
 | |
| void specificTest1() {
 | |
|   Vector2f m;
 | |
|   m << -1.0f, -2.0f;
 | |
|   Vector2f M;
 | |
|   M << 1.0f, 5.0f;
 | |
| 
 | |
|   typedef AlignedBox2f BoxType;
 | |
|   BoxType box(m, M);
 | |
| 
 | |
|   Vector2f sides = M - m;
 | |
|   VERIFY_IS_APPROX(sides, box.sizes());
 | |
|   VERIFY_IS_APPROX(sides[1], box.sizes()[1]);
 | |
|   VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff());
 | |
|   VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff());
 | |
| 
 | |
|   VERIFY_IS_APPROX(14.0f, box.volume());
 | |
|   VERIFY_IS_APPROX(53.0f, box.diagonal().squaredNorm());
 | |
|   VERIFY_IS_APPROX(std::sqrt(53.0f), box.diagonal().norm());
 | |
| 
 | |
|   VERIFY_IS_APPROX(m, box.corner(BoxType::BottomLeft));
 | |
|   VERIFY_IS_APPROX(M, box.corner(BoxType::TopRight));
 | |
|   Vector2f bottomRight;
 | |
|   bottomRight << M[0], m[1];
 | |
|   Vector2f topLeft;
 | |
|   topLeft << m[0], M[1];
 | |
|   VERIFY_IS_APPROX(bottomRight, box.corner(BoxType::BottomRight));
 | |
|   VERIFY_IS_APPROX(topLeft, box.corner(BoxType::TopLeft));
 | |
| }
 | |
| 
 | |
| void specificTest2() {
 | |
|   Vector3i m;
 | |
|   m << -1, -2, 0;
 | |
|   Vector3i M;
 | |
|   M << 1, 5, 3;
 | |
| 
 | |
|   typedef AlignedBox3i BoxType;
 | |
|   BoxType box(m, M);
 | |
| 
 | |
|   Vector3i sides = M - m;
 | |
|   VERIFY_IS_APPROX(sides, box.sizes());
 | |
|   VERIFY_IS_APPROX(sides[1], box.sizes()[1]);
 | |
|   VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff());
 | |
|   VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff());
 | |
| 
 | |
|   VERIFY_IS_APPROX(42, box.volume());
 | |
|   VERIFY_IS_APPROX(62, box.diagonal().squaredNorm());
 | |
| 
 | |
|   VERIFY_IS_APPROX(m, box.corner(BoxType::BottomLeftFloor));
 | |
|   VERIFY_IS_APPROX(M, box.corner(BoxType::TopRightCeil));
 | |
|   Vector3i bottomRightFloor;
 | |
|   bottomRightFloor << M[0], m[1], m[2];
 | |
|   Vector3i topLeftFloor;
 | |
|   topLeftFloor << m[0], M[1], m[2];
 | |
|   VERIFY_IS_APPROX(bottomRightFloor, box.corner(BoxType::BottomRightFloor));
 | |
|   VERIFY_IS_APPROX(topLeftFloor, box.corner(BoxType::TopLeftFloor));
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(geo_alignedbox) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)));
 | |
|     CALL_SUBTEST_2(alignedboxCastTests(AlignedBox2f()));
 | |
| 
 | |
|     CALL_SUBTEST_3((alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)));
 | |
|     CALL_SUBTEST_4(alignedboxCastTests(AlignedBox3f()));
 | |
| 
 | |
|     CALL_SUBTEST_5((alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)));
 | |
|     CALL_SUBTEST_6(alignedboxCastTests(AlignedBox4d()));
 | |
| 
 | |
|     CALL_SUBTEST_7(alignedboxTranslatable(AlignedBox1d()));
 | |
|     CALL_SUBTEST_8(alignedboxCastTests(AlignedBox1d()));
 | |
| 
 | |
|     CALL_SUBTEST_9(alignedboxTranslatable(AlignedBox1i()));
 | |
|     CALL_SUBTEST_10((alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)));
 | |
|     CALL_SUBTEST_11(
 | |
|         (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)));
 | |
| 
 | |
|     CALL_SUBTEST_14(alignedbox(AlignedBox<double, Dynamic>(4)));
 | |
|   }
 | |
|   CALL_SUBTEST_12(specificTest1());
 | |
|   CALL_SUBTEST_13(specificTest2());
 | |
| }
 | 
