200 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| // Silence warnings about using the deprecated non-canonical .eulerAngles(), which are still being tested.
 | |
| #define EIGEN_NO_DEPRECATED_WARNING
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/Geometry>
 | |
| #include <Eigen/LU>
 | |
| #include <Eigen/SVD>
 | |
| 
 | |
| template <typename Scalar>
 | |
| void verify_euler(const Matrix<Scalar, 3, 1>& ea, int i, int j, int k) {
 | |
|   typedef Matrix<Scalar, 3, 3> Matrix3;
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
|   const Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) *
 | |
|                   AngleAxisx(ea[2], Vector3::Unit(k)));
 | |
| 
 | |
|   // Test non-canonical eulerAngles
 | |
|   {
 | |
|     Vector3 eabis = m.eulerAngles(i, j, k);
 | |
|     Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) *
 | |
|                  AngleAxisx(eabis[2], Vector3::Unit(k)));
 | |
|     VERIFY_IS_APPROX(m, mbis);
 | |
| 
 | |
|     // approx_or_less_than does not work for 0
 | |
|     VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
 | |
|   }
 | |
| 
 | |
|   // Test canonicalEulerAngles
 | |
|   {
 | |
|     Vector3 eabis = m.canonicalEulerAngles(i, j, k);
 | |
|     Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) *
 | |
|                  AngleAxisx(eabis[2], Vector3::Unit(k)));
 | |
|     VERIFY_IS_APPROX(m, mbis);
 | |
| 
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[0]);
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
 | |
|     if (i != k) {
 | |
|       // Tait-Bryan sequence
 | |
|       VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI / 2), eabis[1]);
 | |
|       VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI / 2));
 | |
|     } else {
 | |
|       // Proper Euler sequence
 | |
|       // approx_or_less_than does not work for 0
 | |
|       VERIFY(0 < eabis[1] || test_isMuchSmallerThan(eabis[1], Scalar(1)));
 | |
|       VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
 | |
|     }
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void check_all_var(const Matrix<Scalar, 3, 1>& ea) {
 | |
|   auto verify_permutation = [](const Matrix<Scalar, 3, 1>& eap) {
 | |
|     verify_euler(eap, 0, 1, 2);
 | |
|     verify_euler(eap, 0, 1, 0);
 | |
|     verify_euler(eap, 0, 2, 1);
 | |
|     verify_euler(eap, 0, 2, 0);
 | |
| 
 | |
|     verify_euler(eap, 1, 2, 0);
 | |
|     verify_euler(eap, 1, 2, 1);
 | |
|     verify_euler(eap, 1, 0, 2);
 | |
|     verify_euler(eap, 1, 0, 1);
 | |
| 
 | |
|     verify_euler(eap, 2, 0, 1);
 | |
|     verify_euler(eap, 2, 0, 2);
 | |
|     verify_euler(eap, 2, 1, 0);
 | |
|     verify_euler(eap, 2, 1, 2);
 | |
|   };
 | |
| 
 | |
|   int i, j, k;
 | |
|   for (i = 0; i < 3; i++)
 | |
|     for (j = 0; j < 3; j++)
 | |
|       for (k = 0; k < 3; k++) {
 | |
|         Matrix<Scalar, 3, 1> eap(ea(i), ea(j), ea(k));
 | |
|         verify_permutation(eap);
 | |
|       }
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void eulerangles() {
 | |
|   typedef Matrix<Scalar, 3, 3> Matrix3;
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef Array<Scalar, 3, 1> Array3;
 | |
|   typedef Quaternion<Scalar> Quaternionx;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
|   Quaternionx q1;
 | |
|   q1 = AngleAxisx(a, Vector3::Random().normalized());
 | |
|   Matrix3 m;
 | |
|   m = q1;
 | |
| 
 | |
|   Vector3 ea = m.eulerAngles(0, 1, 2);
 | |
|   check_all_var(ea);
 | |
|   ea = m.eulerAngles(0, 1, 0);
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   // Check with purely random Quaternion:
 | |
|   q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
 | |
|   m = q1;
 | |
|   ea = m.eulerAngles(0, 1, 2);
 | |
|   check_all_var(ea);
 | |
|   ea = m.eulerAngles(0, 1, 0);
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   // Check with random angles in range [-pi:pi]x[-pi:pi]x[-pi:pi].
 | |
|   ea = Array3::Random() * Scalar(EIGEN_PI);
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   auto test_with_some_zeros = [](const Vector3& eaz) {
 | |
|     check_all_var(eaz);
 | |
|     Vector3 ea_glz = eaz;
 | |
|     ea_glz[0] = Scalar(0);
 | |
|     check_all_var(ea_glz);
 | |
|     ea_glz[0] = internal::random<Scalar>(-0.001, 0.001);
 | |
|     check_all_var(ea_glz);
 | |
|     ea_glz[2] = Scalar(0);
 | |
|     check_all_var(ea_glz);
 | |
|     ea_glz[2] = internal::random<Scalar>(-0.001, 0.001);
 | |
|     check_all_var(ea_glz);
 | |
|   };
 | |
|   // Check gimbal lock configurations and a bit noisy gimbal locks
 | |
|   Vector3 ea_gl = ea;
 | |
|   ea_gl[1] = EIGEN_PI / 2;
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] = -EIGEN_PI / 2;
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] = EIGEN_PI / 2;
 | |
|   ea_gl[2] = ea_gl[0];
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] = -EIGEN_PI / 2;
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
| 
 | |
|   // Similar to above, but with pi instead of pi/2
 | |
|   Vector3 ea_pi = ea;
 | |
|   ea_pi[1] = EIGEN_PI;
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] = -EIGEN_PI;
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] = EIGEN_PI;
 | |
|   ea_pi[2] = ea_pi[0];
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] = -EIGEN_PI;
 | |
|   test_with_some_zeros(ea_gl);
 | |
|   ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
 | |
|   test_with_some_zeros(ea_gl);
 | |
| 
 | |
|   ea[2] = ea[0] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   ea[0] = ea[1] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   ea[1] = 0;
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   ea.head(2).setZero();
 | |
|   check_all_var(ea);
 | |
| 
 | |
|   ea.setZero();
 | |
|   check_all_var(ea);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(geo_eulerangles) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(eulerangles<float>());
 | |
|     CALL_SUBTEST_2(eulerangles<double>());
 | |
|   }
 | |
| }
 | 
