185 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/Geometry>
 | |
| #include <Eigen/LU>
 | |
| #include <Eigen/QR>
 | |
| 
 | |
| template <typename HyperplaneType>
 | |
| void hyperplane(const HyperplaneType &_plane) {
 | |
|   /* this test covers the following files:
 | |
|      Hyperplane.h
 | |
|   */
 | |
|   using std::abs;
 | |
|   const Index dim = _plane.dim();
 | |
|   enum { Options = HyperplaneType::Options };
 | |
|   typedef typename HyperplaneType::Scalar Scalar;
 | |
|   typedef typename HyperplaneType::RealScalar RealScalar;
 | |
|   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
 | |
|   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, HyperplaneType::AmbientDimAtCompileTime> MatrixType;
 | |
| 
 | |
|   VectorType p0 = VectorType::Random(dim);
 | |
|   VectorType p1 = VectorType::Random(dim);
 | |
| 
 | |
|   VectorType n0 = VectorType::Random(dim).normalized();
 | |
|   VectorType n1 = VectorType::Random(dim).normalized();
 | |
| 
 | |
|   HyperplaneType pl0(n0, p0);
 | |
|   HyperplaneType pl1(n1, p1);
 | |
|   HyperplaneType pl2 = pl1;
 | |
| 
 | |
|   Scalar s0 = internal::random<Scalar>();
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
| 
 | |
|   VERIFY_IS_APPROX(n1.dot(n1), Scalar(1));
 | |
| 
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(pl0.absDistance(p0), Scalar(1));
 | |
|   if (numext::abs2(s0) > RealScalar(1e-6))
 | |
|     VERIFY_IS_APPROX(pl1.signedDistance(p1 + n1 * s0), s0);
 | |
|   else
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1));
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(pl1.signedDistance(pl1.projection(p0)), Scalar(1));
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1));
 | |
| 
 | |
|   // transform
 | |
|   if (!NumTraits<Scalar>::IsComplex) {
 | |
|     MatrixType rot = MatrixType::Random(dim, dim).householderQr().householderQ();
 | |
|     DiagonalMatrix<Scalar, HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
 | |
|     Translation<Scalar, HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
 | |
| 
 | |
|     while (scaling.diagonal().cwiseAbs().minCoeff() < RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
 | |
| 
 | |
|     pl2 = pl1;
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot).absDistance(rot * p1), Scalar(1));
 | |
|     pl2 = pl1;
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot, Isometry).absDistance(rot * p1), Scalar(1));
 | |
|     pl2 = pl1;
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot * scaling).absDistance((rot * scaling) * p1), Scalar(1));
 | |
|     VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1));
 | |
|     pl2 = pl1;
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(
 | |
|         pl2.transform(rot * scaling * translation).absDistance((rot * scaling * translation) * p1), Scalar(1));
 | |
|     VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1));
 | |
|     pl2 = pl1;
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot * translation, Isometry).absDistance((rot * translation) * p1),
 | |
|                                 Scalar(1));
 | |
|     VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1));
 | |
|   }
 | |
| 
 | |
|   // casting
 | |
|   const int Dim = HyperplaneType::AmbientDimAtCompileTime;
 | |
|   typedef typename GetDifferentType<Scalar>::type OtherScalar;
 | |
|   Hyperplane<OtherScalar, Dim, Options> hp1f = pl1.template cast<OtherScalar>();
 | |
|   VERIFY_IS_APPROX(hp1f.template cast<Scalar>(), pl1);
 | |
|   Hyperplane<Scalar, Dim, Options> hp1d = pl1.template cast<Scalar>();
 | |
|   VERIFY_IS_APPROX(hp1d.template cast<Scalar>(), pl1);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void lines() {
 | |
|   using std::abs;
 | |
|   typedef Hyperplane<Scalar, 2> HLine;
 | |
|   typedef ParametrizedLine<Scalar, 2> PLine;
 | |
|   typedef Matrix<Scalar, 2, 1> Vector;
 | |
|   typedef Matrix<Scalar, 3, 1> CoeffsType;
 | |
| 
 | |
|   for (int i = 0; i < 10; i++) {
 | |
|     Vector center = Vector::Random();
 | |
|     Vector u = Vector::Random();
 | |
|     Vector v = Vector::Random();
 | |
|     Scalar a = internal::random<Scalar>();
 | |
|     while (abs(a - 1) < Scalar(1e-4)) a = internal::random<Scalar>();
 | |
|     while (u.norm() < Scalar(1e-4)) u = Vector::Random();
 | |
|     while (v.norm() < Scalar(1e-4)) v = Vector::Random();
 | |
| 
 | |
|     HLine line_u = HLine::Through(center + u, center + a * u);
 | |
|     HLine line_v = HLine::Through(center + v, center + a * v);
 | |
| 
 | |
|     // the line equations should be normalized so that a^2+b^2=1
 | |
|     VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
 | |
|     VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
 | |
| 
 | |
|     Vector result = line_u.intersection(line_v);
 | |
| 
 | |
|     // the lines should intersect at the point we called "center"
 | |
|     if (abs(a - 1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized())) < Scalar(0.9))
 | |
|       VERIFY_IS_APPROX(result, center);
 | |
| 
 | |
|     // check conversions between two types of lines
 | |
|     PLine pl(line_u);  // gcc 3.3 will crash if we don't name this variable.
 | |
|     HLine line_u2(pl);
 | |
|     CoeffsType converted_coeffs = line_u2.coeffs();
 | |
|     if (line_u2.normal().dot(line_u.normal()) < Scalar(0)) converted_coeffs = -line_u2.coeffs();
 | |
|     VERIFY(line_u.coeffs().isApprox(converted_coeffs));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void planes() {
 | |
|   using std::abs;
 | |
|   typedef Hyperplane<Scalar, 3> Plane;
 | |
|   typedef Matrix<Scalar, 3, 1> Vector;
 | |
| 
 | |
|   for (int i = 0; i < 10; i++) {
 | |
|     Vector v0 = Vector::Random();
 | |
|     Vector v1(v0), v2(v0);
 | |
|     if (internal::random<double>(0, 1) > 0.25) v1 += Vector::Random();
 | |
|     if (internal::random<double>(0, 1) > 0.25)
 | |
|       v2 += v1 * std::pow(internal::random<Scalar>(0, 1), internal::random<int>(1, 16));
 | |
|     if (internal::random<double>(0, 1) > 0.25)
 | |
|       v2 += Vector::Random() * std::pow(internal::random<Scalar>(0, 1), internal::random<int>(1, 16));
 | |
| 
 | |
|     Plane p0 = Plane::Through(v0, v1, v2);
 | |
| 
 | |
|     VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void hyperplane_alignment() {
 | |
|   typedef Hyperplane<Scalar, 3, AutoAlign> Plane3a;
 | |
|   typedef Hyperplane<Scalar, 3, DontAlign> Plane3u;
 | |
| 
 | |
|   EIGEN_ALIGN_MAX Scalar array1[4];
 | |
|   EIGEN_ALIGN_MAX Scalar array2[4];
 | |
|   EIGEN_ALIGN_MAX Scalar array3[4 + 1];
 | |
|   Scalar *array3u = array3 + 1;
 | |
| 
 | |
|   Plane3a *p1 = ::new (reinterpret_cast<void *>(array1)) Plane3a;
 | |
|   Plane3u *p2 = ::new (reinterpret_cast<void *>(array2)) Plane3u;
 | |
|   Plane3u *p3 = ::new (reinterpret_cast<void *>(array3u)) Plane3u;
 | |
| 
 | |
|   p1->coeffs().setRandom();
 | |
|   *p2 = *p1;
 | |
|   *p3 = *p1;
 | |
| 
 | |
|   VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
 | |
|   VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(geo_hyperplane) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(hyperplane(Hyperplane<float, 2>()));
 | |
|     CALL_SUBTEST_2(hyperplane(Hyperplane<float, 3>()));
 | |
|     CALL_SUBTEST_2(hyperplane(Hyperplane<float, 3, DontAlign>()));
 | |
|     CALL_SUBTEST_2(hyperplane_alignment<float>());
 | |
|     CALL_SUBTEST_3(hyperplane(Hyperplane<double, 4>()));
 | |
|     CALL_SUBTEST_4(hyperplane(Hyperplane<std::complex<double>, 5>()));
 | |
|     CALL_SUBTEST_1(lines<float>());
 | |
|     CALL_SUBTEST_3(lines<double>());
 | |
|     CALL_SUBTEST_2(planes<float>());
 | |
|     CALL_SUBTEST_5(planes<double>());
 | |
|   }
 | |
| }
 | 
