321 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/Geometry>
 | |
| #include <Eigen/LU>
 | |
| #include <Eigen/SVD>
 | |
| #include "AnnoyingScalar.h"
 | |
| 
 | |
| template <typename T>
 | |
| T bounded_acos(T v) {
 | |
|   using std::acos;
 | |
|   using std::max;
 | |
|   using std::min;
 | |
|   return acos((max)(T(-1), (min)(v, T(1))));
 | |
| }
 | |
| 
 | |
| template <typename QuatType>
 | |
| void check_slerp(const QuatType& q0, const QuatType& q1) {
 | |
|   using std::abs;
 | |
|   typedef typename QuatType::Scalar Scalar;
 | |
|   typedef AngleAxis<Scalar> AA;
 | |
| 
 | |
|   Scalar largeEps = test_precision<Scalar>();
 | |
| 
 | |
|   Scalar theta_tot = AA(q1 * q0.inverse()).angle();
 | |
|   if (theta_tot > Scalar(EIGEN_PI)) theta_tot = Scalar(2.) * Scalar(EIGEN_PI) - theta_tot;
 | |
|   for (Scalar t = 0; t <= Scalar(1.001); t += Scalar(0.1)) {
 | |
|     QuatType q = q0.slerp(t, q1);
 | |
|     Scalar theta = AA(q * q0.inverse()).angle();
 | |
|     VERIFY(abs(q.norm() - 1) < largeEps);
 | |
|     if (theta_tot == 0)
 | |
|       VERIFY(theta_tot == 0);
 | |
|     else
 | |
|       VERIFY(abs(theta - t * theta_tot) < largeEps);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Options>
 | |
| void quaternion(void) {
 | |
|   /* this test covers the following files:
 | |
|      Quaternion.h
 | |
|   */
 | |
|   using std::abs;
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef Matrix<Scalar, 3, 3> Matrix3;
 | |
|   typedef Quaternion<Scalar, Options> Quaternionx;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
| 
 | |
|   Scalar largeEps = test_precision<Scalar>();
 | |
|   if (internal::is_same<Scalar, float>::value) largeEps = Scalar(1e-3);
 | |
| 
 | |
|   Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
 | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(), v3 = Vector3::Random();
 | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)),
 | |
|          b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
| 
 | |
|   // Quaternion: Identity(), setIdentity();
 | |
|   Quaternionx q1, q2;
 | |
|   q2.setIdentity();
 | |
|   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
 | |
|   q1.coeffs().setRandom();
 | |
|   VERIFY_IS_APPROX(q1.coeffs(), (q1 * q2).coeffs());
 | |
| 
 | |
| #ifndef EIGEN_NO_IO
 | |
|   // Printing
 | |
|   std::ostringstream ss;
 | |
|   ss << q2;
 | |
|   VERIFY(ss.str() == "0i + 0j + 0k + 1");
 | |
| #endif
 | |
| 
 | |
|   // concatenation
 | |
|   q1 *= q2;
 | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized());
 | |
|   q2 = AngleAxisx(a, v1.normalized());
 | |
| 
 | |
|   // angular distance
 | |
|   Scalar refangle = abs(AngleAxisx(q1.inverse() * q2).angle());
 | |
|   if (refangle > Scalar(EIGEN_PI)) refangle = Scalar(2) * Scalar(EIGEN_PI) - refangle;
 | |
| 
 | |
|   if ((q1.coeffs() - q2.coeffs()).norm() > Scalar(10) * largeEps) {
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
 | |
|   }
 | |
| 
 | |
|   // Action on vector by the q v q* formula
 | |
|   VERIFY_IS_APPROX(q1 * v2, (q1 * Quaternionx(Scalar(0), v2) * q1.inverse()).vec());
 | |
|   VERIFY_IS_APPROX(q1.inverse() * v2, (q1.inverse() * Quaternionx(Scalar(0), v2) * q1).vec());
 | |
| 
 | |
|   // rotation matrix conversion
 | |
|   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
 | |
|   VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
 | |
| 
 | |
|   VERIFY((q2 * q1).isApprox(q1 * q2, largeEps) ||
 | |
|          !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
 | |
| 
 | |
|   q2 = q1.toRotationMatrix();
 | |
|   VERIFY_IS_APPROX(q1 * v1, q2 * v1);
 | |
| 
 | |
|   Matrix3 rot1(q1);
 | |
|   VERIFY_IS_APPROX(q1 * v1, rot1 * v1);
 | |
|   Quaternionx q3(rot1.transpose() * rot1);
 | |
|   VERIFY_IS_APPROX(q3 * v1, v1);
 | |
| 
 | |
|   // angle-axis conversion
 | |
|   AngleAxisx aa = AngleAxisx(q1);
 | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
 | |
| 
 | |
|   // Do not execute the test if the rotation angle is almost zero, or
 | |
|   // the rotation axis and v1 are almost parallel.
 | |
|   if (abs(aa.angle()) > Scalar(5) * test_precision<Scalar>() && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) &&
 | |
|       (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) {
 | |
|     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1);
 | |
|   }
 | |
| 
 | |
|   // from two vector creation
 | |
|   VERIFY_IS_APPROX(v2.normalized(), (q2.setFromTwoVectors(v1, v2) * v1).normalized());
 | |
|   VERIFY_IS_APPROX(v1.normalized(), (q2.setFromTwoVectors(v1, v1) * v1).normalized());
 | |
|   VERIFY_IS_APPROX(-v1.normalized(), (q2.setFromTwoVectors(v1, -v1) * v1).normalized());
 | |
|   if (internal::is_same<Scalar, double>::value) {
 | |
|     v3 = (v1.array() + eps).matrix();
 | |
|     VERIFY_IS_APPROX(v3.normalized(), (q2.setFromTwoVectors(v1, v3) * v1).normalized());
 | |
|     VERIFY_IS_APPROX(-v3.normalized(), (q2.setFromTwoVectors(v1, -v3) * v1).normalized());
 | |
|   }
 | |
| 
 | |
|   // from two vector creation static function
 | |
|   VERIFY_IS_APPROX(v2.normalized(), (Quaternionx::FromTwoVectors(v1, v2) * v1).normalized());
 | |
|   VERIFY_IS_APPROX(v1.normalized(), (Quaternionx::FromTwoVectors(v1, v1) * v1).normalized());
 | |
|   VERIFY_IS_APPROX(-v1.normalized(), (Quaternionx::FromTwoVectors(v1, -v1) * v1).normalized());
 | |
|   if (internal::is_same<Scalar, double>::value) {
 | |
|     v3 = (v1.array() + eps).matrix();
 | |
|     VERIFY_IS_APPROX(v3.normalized(), (Quaternionx::FromTwoVectors(v1, v3) * v1).normalized());
 | |
|     VERIFY_IS_APPROX(-v3.normalized(), (Quaternionx::FromTwoVectors(v1, -v3) * v1).normalized());
 | |
|   }
 | |
| 
 | |
|   // inverse and conjugate
 | |
|   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
 | |
|   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
 | |
| 
 | |
|   // test casting
 | |
|   Quaternion<float> q1f = q1.template cast<float>();
 | |
|   VERIFY_IS_APPROX(q1f.template cast<Scalar>(), q1);
 | |
|   Quaternion<double> q1d = q1.template cast<double>();
 | |
|   VERIFY_IS_APPROX(q1d.template cast<Scalar>(), q1);
 | |
| 
 | |
|   // test bug 369 - improper alignment.
 | |
|   Quaternionx* q = new Quaternionx;
 | |
|   delete q;
 | |
| 
 | |
|   q1 = Quaternionx::UnitRandom();
 | |
|   q2 = Quaternionx::UnitRandom();
 | |
|   check_slerp(q1, q2);
 | |
| 
 | |
|   q1 = AngleAxisx(b, v1.normalized());
 | |
|   q2 = AngleAxisx(b + Scalar(EIGEN_PI), v1.normalized());
 | |
|   check_slerp(q1, q2);
 | |
| 
 | |
|   q1 = AngleAxisx(b, v1.normalized());
 | |
|   q2 = AngleAxisx(-b, -v1.normalized());
 | |
|   check_slerp(q1, q2);
 | |
| 
 | |
|   q1 = Quaternionx::UnitRandom();
 | |
|   q2.coeffs() = -q1.coeffs();
 | |
|   check_slerp(q1, q2);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void mapQuaternion(void) {
 | |
|   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
 | |
|   typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
 | |
|   typedef Map<Quaternion<Scalar> > MQuaternionUA;
 | |
|   typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
 | |
|   typedef Quaternion<Scalar> Quaternionx;
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random();
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
| 
 | |
|   EIGEN_ALIGN_MAX Scalar array1[4];
 | |
|   EIGEN_ALIGN_MAX Scalar array2[4];
 | |
|   EIGEN_ALIGN_MAX Scalar array3[4 + 1];
 | |
|   Scalar* array3unaligned = array3 + 1;
 | |
| 
 | |
|   MQuaternionA mq1(array1);
 | |
|   MCQuaternionA mcq1(array1);
 | |
|   MQuaternionA mq2(array2);
 | |
|   MQuaternionUA mq3(array3unaligned);
 | |
|   MCQuaternionUA mcq3(array3unaligned);
 | |
| 
 | |
|   //  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
 | |
|   mq1 = AngleAxisx(a, v0.normalized());
 | |
|   mq2 = mq1;
 | |
|   mq3 = mq1;
 | |
| 
 | |
|   Quaternionx q1 = mq1;
 | |
|   Quaternionx q2 = mq2;
 | |
|   Quaternionx q3 = mq3;
 | |
|   Quaternionx q4 = MCQuaternionUA(array3unaligned);
 | |
| 
 | |
|   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
 | |
|   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
 | |
|   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
 | |
| 
 | |
|   VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
 | |
|   VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
 | |
|   VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
 | |
|   VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
 | |
|   VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(mq1 * mq2, q1 * q2);
 | |
|   VERIFY_IS_APPROX(mq3 * mq2, q3 * q2);
 | |
|   VERIFY_IS_APPROX(mcq1 * mq2, q1 * q2);
 | |
|   VERIFY_IS_APPROX(mcq3 * mq2, q3 * q2);
 | |
| 
 | |
|   // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks:
 | |
|   VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum());
 | |
|   VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum());
 | |
|   mq3.w() = 1;
 | |
|   const Quaternionx& cq3(q3);
 | |
|   VERIFY(&cq3.x() == &q3.x());
 | |
|   const MQuaternionUA& cmq3(mq3);
 | |
|   VERIFY(&cmq3.x() == &mq3.x());
 | |
|   // FIXME the following should be ok. The problem is that currently the LValueBit flag
 | |
|   // is used to determine whether we can return a coeff by reference or not, which is not enough for Map<const ...>.
 | |
|   // const MCQuaternionUA& cmcq3(mcq3);
 | |
|   // VERIFY( &cmcq3.x() == &mcq3.x() );
 | |
| 
 | |
|   // test cast
 | |
|   {
 | |
|     Quaternion<float> q1f = mq1.template cast<float>();
 | |
|     VERIFY_IS_APPROX(q1f.template cast<Scalar>(), mq1);
 | |
|     Quaternion<double> q1d = mq1.template cast<double>();
 | |
|     VERIFY_IS_APPROX(q1d.template cast<Scalar>(), mq1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void quaternionAlignment(void) {
 | |
|   typedef Quaternion<Scalar, AutoAlign> QuaternionA;
 | |
|   typedef Quaternion<Scalar, DontAlign> QuaternionUA;
 | |
| 
 | |
|   EIGEN_ALIGN_MAX Scalar array1[4];
 | |
|   EIGEN_ALIGN_MAX Scalar array2[4];
 | |
|   EIGEN_ALIGN_MAX Scalar array3[4 + 1];
 | |
|   Scalar* arrayunaligned = array3 + 1;
 | |
| 
 | |
|   QuaternionA* q1 = ::new (reinterpret_cast<void*>(array1)) QuaternionA;
 | |
|   QuaternionUA* q2 = ::new (reinterpret_cast<void*>(array2)) QuaternionUA;
 | |
|   QuaternionUA* q3 = ::new (reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
 | |
| 
 | |
|   q1->coeffs().setRandom();
 | |
|   *q2 = *q1;
 | |
|   *q3 = *q1;
 | |
| 
 | |
|   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
 | |
|   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
 | |
| }
 | |
| 
 | |
| template <typename PlainObjectType>
 | |
| void check_const_correctness(const PlainObjectType&) {
 | |
|   // there's a lot that we can't test here while still having this test compile!
 | |
|   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
 | |
|   // CMake can help with that.
 | |
| 
 | |
|   // verify that map-to-const don't have LvalueBit
 | |
|   typedef std::add_const_t<PlainObjectType> ConstPlainObjectType;
 | |
|   VERIFY(!(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit));
 | |
|   VERIFY(!(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit));
 | |
|   VERIFY(!(Map<ConstPlainObjectType>::Flags & LvalueBit));
 | |
|   VERIFY(!(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit));
 | |
| }
 | |
| 
 | |
| // Regression for bug 1573
 | |
| struct MovableClass {
 | |
|   // The following line is a workaround for gcc 4.7 and 4.8 (see bug 1573 comments).
 | |
|   static_assert(std::is_nothrow_move_constructible<Quaternionf>::value, "");
 | |
|   MovableClass() = default;
 | |
|   MovableClass(const MovableClass&) = default;
 | |
|   MovableClass(MovableClass&&) noexcept = default;
 | |
|   MovableClass& operator=(const MovableClass&) = default;
 | |
|   MovableClass& operator=(MovableClass&&) = default;
 | |
|   Quaternionf m_quat;
 | |
| };
 | |
| 
 | |
| EIGEN_DECLARE_TEST(geo_quaternion) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((quaternion<float, AutoAlign>()));
 | |
|     CALL_SUBTEST_1(check_const_correctness(Quaternionf()));
 | |
|     CALL_SUBTEST_1((quaternion<float, DontAlign>()));
 | |
|     CALL_SUBTEST_1((quaternionAlignment<float>()));
 | |
|     CALL_SUBTEST_1(mapQuaternion<float>());
 | |
| 
 | |
|     CALL_SUBTEST_2((quaternion<double, AutoAlign>()));
 | |
|     CALL_SUBTEST_2(check_const_correctness(Quaterniond()));
 | |
|     CALL_SUBTEST_2((quaternion<double, DontAlign>()));
 | |
|     CALL_SUBTEST_2((quaternionAlignment<double>()));
 | |
|     CALL_SUBTEST_2(mapQuaternion<double>());
 | |
| 
 | |
| #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW
 | |
|     AnnoyingScalar::dont_throw = true;
 | |
| #endif
 | |
|     CALL_SUBTEST_3((quaternion<AnnoyingScalar, AutoAlign>()));
 | |
|   }
 | |
| }
 | 
