723 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			723 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/Geometry>
 | |
| #include <Eigen/LU>
 | |
| #include <Eigen/SVD>
 | |
| 
 | |
| template <typename T>
 | |
| Matrix<T, 2, 1> angleToVec(T a) {
 | |
|   return Matrix<T, 2, 1>(std::cos(a), std::sin(a));
 | |
| }
 | |
| 
 | |
| // This permits to workaround a bug in clang/llvm code generation.
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE void dont_over_optimize(T& x) {
 | |
|   volatile typename T::Scalar tmp = x(0);
 | |
|   x(0) = tmp;
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Mode, int Options>
 | |
| void non_projective_only() {
 | |
|   /* this test covers the following files:
 | |
|    Cross.h Quaternion.h, Transform.cpp
 | |
| */
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef Quaternion<Scalar> Quaternionx;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
|   typedef Transform<Scalar, 3, Mode, Options> Transform3;
 | |
|   typedef DiagonalMatrix<Scalar, 3> AlignedScaling3;
 | |
|   typedef Translation<Scalar, 3> Translation3;
 | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random();
 | |
| 
 | |
|   Transform3 t0, t1, t2;
 | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
| 
 | |
|   Quaternionx q1, q2;
 | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized());
 | |
| 
 | |
|   t0 = Transform3::Identity();
 | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
 | |
| 
 | |
|   t0.linear() = q1.toRotationMatrix();
 | |
| 
 | |
|   v0 << 50, 2, 1;
 | |
|   t0.scale(v0);
 | |
| 
 | |
|   VERIFY_IS_APPROX((t0 * Vector3(1, 0, 0)).template head<3>().norm(), v0.x());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t1.setIdentity();
 | |
|   v1 << 1, 2, 3;
 | |
|   t0.linear() = q1.toRotationMatrix();
 | |
|   t0.pretranslate(v0);
 | |
|   t0.scale(v1);
 | |
|   t1.linear() = q1.conjugate().toRotationMatrix();
 | |
|   t1.prescale(v1.cwiseInverse());
 | |
|   t1.translate(-v0);
 | |
| 
 | |
|   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
 | |
| 
 | |
|   t1.fromPositionOrientationScale(v0, q1, v1);
 | |
|   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
 | |
|   VERIFY_IS_APPROX(t1 * v1, t0 * v1);
 | |
| 
 | |
|   // translation * vector
 | |
|   t0.setIdentity();
 | |
|   t0.translate(v0);
 | |
|   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
 | |
| 
 | |
|   // AlignedScaling * vector
 | |
|   t0.setIdentity();
 | |
|   t0.scale(v0);
 | |
|   VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Mode, int Options>
 | |
| void transformations() {
 | |
|   /* this test covers the following files:
 | |
|      Cross.h Quaternion.h, Transform.cpp
 | |
|   */
 | |
|   using std::abs;
 | |
|   using std::cos;
 | |
|   typedef Matrix<Scalar, 3, 3> Matrix3;
 | |
|   typedef Matrix<Scalar, 4, 4> Matrix4;
 | |
|   typedef Matrix<Scalar, 2, 1> Vector2;
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef Matrix<Scalar, 4, 1> Vector4;
 | |
|   typedef Quaternion<Scalar> Quaternionx;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
|   typedef Transform<Scalar, 2, Mode, Options> Transform2;
 | |
|   typedef Transform<Scalar, 3, Mode, Options> Transform3;
 | |
|   typedef typename Transform3::MatrixType MatrixType;
 | |
|   typedef DiagonalMatrix<Scalar, 3> AlignedScaling3;
 | |
|   typedef Translation<Scalar, 2> Translation2;
 | |
|   typedef Translation<Scalar, 3> Translation3;
 | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random();
 | |
|   Matrix3 matrot1, m;
 | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
|   Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>();
 | |
| 
 | |
|   while (v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random();
 | |
|   while (v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random();
 | |
| 
 | |
|   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
 | |
|   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0);
 | |
|   if (abs(cos(a)) > test_precision<Scalar>()) {
 | |
|     VERIFY_IS_APPROX(cos(a) * v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
 | |
|   }
 | |
|   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
 | |
|   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
 | |
|   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
 | |
| 
 | |
|   Quaternionx q1, q2;
 | |
|   q1 = AngleAxisx(a, v0.normalized());
 | |
|   q2 = AngleAxisx(a, v1.normalized());
 | |
| 
 | |
|   // rotation matrix conversion
 | |
|   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) * AngleAxisx(Scalar(0.2), Vector3::UnitY()) *
 | |
|             AngleAxisx(Scalar(0.3), Vector3::UnitZ());
 | |
|   VERIFY_IS_APPROX(matrot1 * v1, AngleAxisx(Scalar(0.1), Vector3(1, 0, 0)).toRotationMatrix() *
 | |
|                                      (AngleAxisx(Scalar(0.2), Vector3(0, 1, 0)).toRotationMatrix() *
 | |
|                                       (AngleAxisx(Scalar(0.3), Vector3(0, 0, 1)).toRotationMatrix() * v1)));
 | |
| 
 | |
|   // angle-axis conversion
 | |
|   AngleAxisx aa = AngleAxisx(q1);
 | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
 | |
| 
 | |
|   // The following test is stable only if 2*angle != angle and v1 is not colinear with axis
 | |
|   if ((abs(aa.angle()) > test_precision<Scalar>()) &&
 | |
|       (abs(aa.axis().dot(v1.normalized())) < (Scalar(1) - Scalar(4) * test_precision<Scalar>()))) {
 | |
|     VERIFY(!(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1));
 | |
|   }
 | |
| 
 | |
|   aa.fromRotationMatrix(aa.toRotationMatrix());
 | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
 | |
|   // The following test is stable only if 2*angle != angle and v1 is not colinear with axis
 | |
|   if ((abs(aa.angle()) > test_precision<Scalar>()) &&
 | |
|       (abs(aa.axis().dot(v1.normalized())) < (Scalar(1) - Scalar(4) * test_precision<Scalar>()))) {
 | |
|     VERIFY(!(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1));
 | |
|   }
 | |
| 
 | |
|   // AngleAxis
 | |
|   VERIFY_IS_APPROX(AngleAxisx(a, v1.normalized()).toRotationMatrix(),
 | |
|                    Quaternionx(AngleAxisx(a, v1.normalized())).toRotationMatrix());
 | |
| 
 | |
|   AngleAxisx aa1;
 | |
|   m = q1.toRotationMatrix();
 | |
|   aa1 = m;
 | |
|   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), Quaternionx(m).toRotationMatrix());
 | |
| 
 | |
|   // Transform
 | |
|   // TODO complete the tests !
 | |
|   a = 0;
 | |
|   while (abs(a) < Scalar(0.1))
 | |
|     a = internal::random<Scalar>(-Scalar(0.4) * Scalar(EIGEN_PI), Scalar(0.4) * Scalar(EIGEN_PI));
 | |
|   q1 = AngleAxisx(a, v0.normalized());
 | |
|   Transform3 t0, t1, t2;
 | |
| 
 | |
|   // first test setIdentity() and Identity()
 | |
|   t0.setIdentity();
 | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
 | |
|   t0.matrix().setZero();
 | |
|   t0 = Transform3::Identity();
 | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t1.setIdentity();
 | |
|   v1 << 1, 2, 3;
 | |
|   t0.linear() = q1.toRotationMatrix();
 | |
|   t0.pretranslate(v0);
 | |
|   t0.scale(v1);
 | |
|   t1.linear() = q1.conjugate().toRotationMatrix();
 | |
|   t1.prescale(v1.cwiseInverse());
 | |
|   t1.translate(-v0);
 | |
| 
 | |
|   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
 | |
| 
 | |
|   t1.fromPositionOrientationScale(v0, q1, v1);
 | |
|   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t0.scale(v0).rotate(q1.toRotationMatrix());
 | |
|   t1.setIdentity();
 | |
|   t1.scale(v0).rotate(q1);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t0.scale(v0).rotate(AngleAxisx(q1));
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
 | |
|   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
 | |
| 
 | |
|   // More transform constructors, operator=, operator*=
 | |
| 
 | |
|   Matrix3 mat3 = Matrix3::Random();
 | |
|   Matrix4 mat4;
 | |
|   mat4 << mat3, Vector3::Zero(), Vector4::Zero().transpose();
 | |
|   Transform3 tmat3(mat3), tmat4(mat4);
 | |
|   if (Mode != int(AffineCompact)) tmat4.matrix()(3, 3) = Scalar(1);
 | |
|   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
 | |
| 
 | |
|   Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
|   Vector3 v3 = Vector3::Random().normalized();
 | |
|   AngleAxisx aa3(a3, v3);
 | |
|   Transform3 t3(aa3);
 | |
|   Transform3 t4;
 | |
|   t4 = aa3;
 | |
|   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
 | |
|   t4.rotate(AngleAxisx(-a3, v3));
 | |
|   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
 | |
|   t4 *= aa3;
 | |
|   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
 | |
| 
 | |
|   do {
 | |
|     v3 = Vector3::Random();
 | |
|     dont_over_optimize(v3);
 | |
|   } while (v3.cwiseAbs().minCoeff() < NumTraits<Scalar>::epsilon());
 | |
|   Translation3 tv3(v3);
 | |
|   Transform3 t5(tv3);
 | |
|   t4 = tv3;
 | |
|   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
 | |
|   t4.translate((-v3).eval());
 | |
|   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
 | |
|   t4 *= tv3;
 | |
|   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
 | |
| 
 | |
|   AlignedScaling3 sv3(v3);
 | |
|   Transform3 t6(sv3);
 | |
|   t4 = sv3;
 | |
|   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
 | |
|   t4.scale(v3.cwiseInverse());
 | |
|   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
 | |
|   t4 *= sv3;
 | |
|   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
 | |
| 
 | |
|   // matrix * transform
 | |
|   VERIFY_IS_APPROX((t3.matrix() * t4).matrix(), (t3 * t4).matrix());
 | |
| 
 | |
|   // chained Transform product
 | |
|   VERIFY_IS_APPROX(((t3 * t4) * t5).matrix(), (t3 * (t4 * t5)).matrix());
 | |
| 
 | |
|   // check that Transform product doesn't have aliasing problems
 | |
|   t5 = t4;
 | |
|   t5 = t5 * t5;
 | |
|   VERIFY_IS_APPROX(t5, t4 * t4);
 | |
| 
 | |
|   // 2D transformation
 | |
|   Transform2 t20, t21;
 | |
|   Vector2 v20 = Vector2::Random();
 | |
|   Vector2 v21 = Vector2::Random();
 | |
|   for (int k = 0; k < 2; ++k)
 | |
|     if (abs(v21[k]) < Scalar(1e-3)) v21[k] = Scalar(1e-3);
 | |
|   t21.setIdentity();
 | |
|   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
 | |
|   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20, a, v21).matrix(), t21.pretranslate(v20).scale(v21).matrix());
 | |
| 
 | |
|   t21.setIdentity();
 | |
|   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
 | |
|   VERIFY((t20.fromPositionOrientationScale(v20, a, v21) * (t21.prescale(v21.cwiseInverse()).translate(-v20)))
 | |
|              .matrix()
 | |
|              .isIdentity(test_precision<Scalar>()));
 | |
| 
 | |
|   // Transform - new API
 | |
|   // 3D
 | |
|   t0.setIdentity();
 | |
|   t0.rotate(q1).scale(v0).translate(v0);
 | |
|   // mat * aligned scaling and mat * translation
 | |
|   t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   // mat * transformation and aligned scaling * translation
 | |
|   t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t0.scale(s0).translate(v0);
 | |
|   t1 = Eigen::Scaling(s0) * Translation3(v0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   t0.prescale(s0);
 | |
|   t1 = Eigen::Scaling(s0) * t1;
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   t0 = t3;
 | |
|   t0.scale(s0);
 | |
|   t1 = t3 * Eigen::Scaling(s0, s0, s0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   t0.prescale(s0);
 | |
|   t1 = Eigen::Scaling(s0, s0, s0) * t1;
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   t0 = t3;
 | |
|   t0.scale(s0);
 | |
|   t1 = t3 * Eigen::Scaling(s0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   t0.prescale(s0);
 | |
|   t1 = Eigen::Scaling(s0) * t1;
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t0.prerotate(q1).prescale(v0).pretranslate(v0);
 | |
|   // translation * aligned scaling and transformation * mat
 | |
|   t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   // scaling * mat and translation * mat
 | |
|   t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t0.scale(v0).translate(v0).rotate(q1);
 | |
|   // translation * mat and aligned scaling * transformation
 | |
|   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   // transformation * aligned scaling
 | |
|   t0.scale(v0);
 | |
|   t1 *= AlignedScaling3(v0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
 | |
|   t1 = t1 * v0.asDiagonal();
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   // transformation * translation
 | |
|   t0.translate(v0);
 | |
|   t1 = t1 * Translation3(v0);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
|   // translation * transformation
 | |
|   t0.pretranslate(v0);
 | |
|   t1 = Translation3(v0) * t1;
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // transform * quaternion
 | |
|   t0.rotate(q1);
 | |
|   t1 = t1 * q1;
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // translation * quaternion
 | |
|   t0.translate(v1).rotate(q1);
 | |
|   t1 = t1 * (Translation3(v1) * q1);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // aligned scaling * quaternion
 | |
|   t0.scale(v1).rotate(q1);
 | |
|   t1 = t1 * (AlignedScaling3(v1) * q1);
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // quaternion * transform
 | |
|   t0.prerotate(q1);
 | |
|   t1 = q1 * t1;
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // quaternion * translation
 | |
|   t0.rotate(q1).translate(v1);
 | |
|   t1 = t1 * (q1 * Translation3(v1));
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // quaternion * aligned scaling
 | |
|   t0.rotate(q1).scale(v1);
 | |
|   t1 = t1 * (q1 * AlignedScaling3(v1));
 | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
 | |
| 
 | |
|   // test transform inversion
 | |
|   t0.setIdentity();
 | |
|   t0.translate(v0);
 | |
|   do {
 | |
|     t0.linear().setRandom();
 | |
|   } while (t0.linear().jacobiSvd().singularValues()(2) < test_precision<Scalar>());
 | |
|   Matrix4 t044 = Matrix4::Zero();
 | |
|   t044(3, 3) = 1;
 | |
|   t044.block(0, 0, t0.matrix().rows(), 4) = t0.matrix();
 | |
|   VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0, 0, t0.matrix().rows(), 4));
 | |
|   t0.setIdentity();
 | |
|   t0.translate(v0).rotate(q1);
 | |
|   t044 = Matrix4::Zero();
 | |
|   t044(3, 3) = 1;
 | |
|   t044.block(0, 0, t0.matrix().rows(), 4) = t0.matrix();
 | |
|   VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0, 0, t0.matrix().rows(), 4));
 | |
| 
 | |
|   Matrix3 mat_rotation, mat_scaling;
 | |
|   t0.setIdentity();
 | |
|   t0.translate(v0).rotate(q1).scale(v1);
 | |
|   t0.computeRotationScaling(&mat_rotation, &mat_scaling);
 | |
|   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
 | |
|   VERIFY_IS_APPROX(mat_rotation * mat_rotation.adjoint(), Matrix3::Identity());
 | |
|   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
 | |
|   t0.computeScalingRotation(&mat_scaling, &mat_rotation);
 | |
|   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
 | |
|   VERIFY_IS_APPROX(mat_rotation * mat_rotation.adjoint(), Matrix3::Identity());
 | |
|   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
 | |
| 
 | |
|   // test casting
 | |
|   Transform<float, 3, Mode> t1f = t1.template cast<float>();
 | |
|   VERIFY_IS_APPROX(t1f.template cast<Scalar>(), t1);
 | |
|   Transform<double, 3, Mode> t1d = t1.template cast<double>();
 | |
|   VERIFY_IS_APPROX(t1d.template cast<Scalar>(), t1);
 | |
| 
 | |
|   Translation3 tr1(v0);
 | |
|   Translation<float, 3> tr1f = tr1.template cast<float>();
 | |
|   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(), tr1);
 | |
|   Translation<double, 3> tr1d = tr1.template cast<double>();
 | |
|   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(), tr1);
 | |
| 
 | |
|   AngleAxis<float> aa1f = aa1.template cast<float>();
 | |
|   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(), aa1);
 | |
|   AngleAxis<double> aa1d = aa1.template cast<double>();
 | |
|   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(), aa1);
 | |
| 
 | |
|   Rotation2D<Scalar> r2d1(internal::random<Scalar>());
 | |
|   Rotation2D<float> r2d1f = r2d1.template cast<float>();
 | |
|   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(), r2d1);
 | |
|   Rotation2D<double> r2d1d = r2d1.template cast<double>();
 | |
|   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(), r2d1);
 | |
| 
 | |
|   for (int k = 0; k < 100; ++k) {
 | |
|     Scalar angle = internal::random<Scalar>(-100, 100);
 | |
|     Rotation2D<Scalar> rot2(angle);
 | |
|     VERIFY(rot2.smallestPositiveAngle() >= 0);
 | |
|     VERIFY(rot2.smallestPositiveAngle() <= Scalar(2) * Scalar(EIGEN_PI));
 | |
|     VERIFY_IS_APPROX(angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle()));
 | |
| 
 | |
|     VERIFY(rot2.smallestAngle() >= -Scalar(EIGEN_PI));
 | |
|     VERIFY(rot2.smallestAngle() <= Scalar(EIGEN_PI));
 | |
|     VERIFY_IS_APPROX(angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle()));
 | |
| 
 | |
|     Matrix<Scalar, 2, 2> rot2_as_mat(rot2);
 | |
|     Rotation2D<Scalar> rot3(rot2_as_mat);
 | |
|     VERIFY_IS_APPROX(angleToVec(rot2.smallestAngle()), angleToVec(rot3.angle()));
 | |
|   }
 | |
| 
 | |
|   s0 = internal::random<Scalar>(-100, 100);
 | |
|   s1 = internal::random<Scalar>(-100, 100);
 | |
|   Rotation2D<Scalar> R0(s0), R1(s1);
 | |
| 
 | |
|   t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0));
 | |
|   t21 = Translation2(v20) * R0 * Eigen::Scaling(s0);
 | |
|   VERIFY_IS_APPROX(t20, t21);
 | |
| 
 | |
|   t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0));
 | |
|   t21 = Translation2(v20) * Eigen::Scaling(s0);
 | |
|   VERIFY_IS_APPROX(t20, t21);
 | |
| 
 | |
|   VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle());
 | |
|   VERIFY_IS_APPROX(angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle()));
 | |
|   VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle());
 | |
| 
 | |
|   if (std::cos(s0) > 0)
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1));
 | |
|   else
 | |
|     VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle());
 | |
| 
 | |
|   // Check path length
 | |
|   Scalar l = 0;
 | |
|   int path_steps = 100;
 | |
|   for (int k = 0; k < path_steps; ++k) {
 | |
|     Scalar a1 = R0.slerp(Scalar(k) / Scalar(path_steps), R1).angle();
 | |
|     Scalar a2 = R0.slerp(Scalar(k + 1) / Scalar(path_steps), R1).angle();
 | |
|     l += std::abs(a2 - a1);
 | |
|   }
 | |
|   VERIFY(l <= Scalar(EIGEN_PI) * (Scalar(1) + NumTraits<Scalar>::epsilon() * Scalar(path_steps / 2)));
 | |
| 
 | |
|   // check basic features
 | |
|   {
 | |
|     Rotation2D<Scalar> r1;        // default ctor
 | |
|     r1 = Rotation2D<Scalar>(s0);  // copy assignment
 | |
|     VERIFY_IS_APPROX(r1.angle(), s0);
 | |
|     Rotation2D<Scalar> r2(r1);  // copy ctor
 | |
|     VERIFY_IS_APPROX(r2.angle(), s0);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Transform3 t32(Matrix4::Random()), t33, t34;
 | |
|     t34 = t33 = t32;
 | |
|     t32.scale(v0);
 | |
|     t33 *= AlignedScaling3(v0);
 | |
|     VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
 | |
|     t33 = t34 * AlignedScaling3(v0);
 | |
|     VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename A1, typename A2, typename P, typename Q, typename V, typename H>
 | |
| void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) {
 | |
|   VERIFY_IS_APPROX(q * (a1 * v), (q * a1) * v);
 | |
|   VERIFY_IS_APPROX(q * (a2 * v), (q * a2) * v);
 | |
|   VERIFY_IS_APPROX(q * (p * h).hnormalized(), ((q * p) * h).hnormalized());
 | |
| }
 | |
| 
 | |
| template <typename A1, typename A2, typename P, typename Q, typename V, typename H>
 | |
| void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) {
 | |
|   VERIFY_IS_APPROX(a1 * (q * v), (a1 * q) * v);
 | |
|   VERIFY_IS_APPROX(a2 * (q * v), (a2 * q) * v);
 | |
|   VERIFY_IS_APPROX(p * (q * v).homogeneous(), (p * q) * v.homogeneous());
 | |
| 
 | |
|   transform_associativity_left(a1, a2, p, q, v, h);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Dim, int Options, typename RotationType>
 | |
| void transform_associativity(const RotationType& R) {
 | |
|   typedef Matrix<Scalar, Dim, 1> VectorType;
 | |
|   typedef Matrix<Scalar, Dim + 1, 1> HVectorType;
 | |
|   typedef Matrix<Scalar, Dim, Dim> LinearType;
 | |
|   typedef Matrix<Scalar, Dim + 1, Dim + 1> MatrixType;
 | |
|   typedef Transform<Scalar, Dim, AffineCompact, Options> AffineCompactType;
 | |
|   typedef Transform<Scalar, Dim, Affine, Options> AffineType;
 | |
|   typedef Transform<Scalar, Dim, Projective, Options> ProjectiveType;
 | |
|   typedef DiagonalMatrix<Scalar, Dim> ScalingType;
 | |
|   typedef Translation<Scalar, Dim> TranslationType;
 | |
| 
 | |
|   AffineCompactType A1c;
 | |
|   A1c.matrix().setRandom();
 | |
|   AffineCompactType A2c;
 | |
|   A2c.matrix().setRandom();
 | |
|   AffineType A1(A1c);
 | |
|   AffineType A2(A2c);
 | |
|   ProjectiveType P1;
 | |
|   P1.matrix().setRandom();
 | |
|   VectorType v1 = VectorType::Random();
 | |
|   VectorType v2 = VectorType::Random();
 | |
|   HVectorType h1 = HVectorType::Random();
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
|   LinearType L = LinearType::Random();
 | |
|   MatrixType M = MatrixType::Random();
 | |
| 
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, A2, v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, A2c, v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity_left(A1c, A1, P1, L, v2, h1));
 | |
|   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, R, v2, h1));
 | |
| 
 | |
|   VERIFY_IS_APPROX(A1 * (M * h1), (A1 * M) * h1);
 | |
|   VERIFY_IS_APPROX(A1c * (M * h1), (A1c * M) * h1);
 | |
|   VERIFY_IS_APPROX(P1 * (M * h1), (P1 * M) * h1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(M * (A1 * h1), (M * A1) * h1);
 | |
|   VERIFY_IS_APPROX(M * (A1c * h1), (M * A1c) * h1);
 | |
|   VERIFY_IS_APPROX(M * (P1 * h1), ((M * P1) * h1));
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void transform_alignment() {
 | |
|   typedef Transform<Scalar, 3, Projective, AutoAlign> Projective3a;
 | |
|   typedef Transform<Scalar, 3, Projective, DontAlign> Projective3u;
 | |
| 
 | |
|   EIGEN_ALIGN_MAX Scalar array1[16];
 | |
|   EIGEN_ALIGN_MAX Scalar array2[16];
 | |
|   EIGEN_ALIGN_MAX Scalar array3[16 + 1];
 | |
|   Scalar* array3u = array3 + 1;
 | |
| 
 | |
|   Projective3a* p1 = ::new (reinterpret_cast<void*>(array1)) Projective3a;
 | |
|   Projective3u* p2 = ::new (reinterpret_cast<void*>(array2)) Projective3u;
 | |
|   Projective3u* p3 = ::new (reinterpret_cast<void*>(array3u)) Projective3u;
 | |
| 
 | |
|   p1->matrix().setRandom();
 | |
|   *p2 = *p1;
 | |
|   *p3 = *p1;
 | |
| 
 | |
|   VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
 | |
|   VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
 | |
| 
 | |
|   VERIFY_IS_APPROX((*p1) * (*p1), (*p2) * (*p3));
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Dim, int Options>
 | |
| void transform_products() {
 | |
|   typedef Matrix<Scalar, Dim + 1, Dim + 1> Mat;
 | |
|   typedef Transform<Scalar, Dim, Projective, Options> Proj;
 | |
|   typedef Transform<Scalar, Dim, Affine, Options> Aff;
 | |
|   typedef Transform<Scalar, Dim, AffineCompact, Options> AffC;
 | |
| 
 | |
|   Proj p;
 | |
|   p.matrix().setRandom();
 | |
|   Aff a;
 | |
|   a.linear().setRandom();
 | |
|   a.translation().setRandom();
 | |
|   AffC ac = a;
 | |
| 
 | |
|   Mat p_m(p.matrix()), a_m(a.matrix());
 | |
| 
 | |
|   VERIFY_IS_APPROX((p * p).matrix(), p_m * p_m);
 | |
|   VERIFY_IS_APPROX((a * a).matrix(), a_m * a_m);
 | |
|   VERIFY_IS_APPROX((p * a).matrix(), p_m * a_m);
 | |
|   VERIFY_IS_APPROX((a * p).matrix(), a_m * p_m);
 | |
|   VERIFY_IS_APPROX((ac * a).matrix(), a_m * a_m);
 | |
|   VERIFY_IS_APPROX((a * ac).matrix(), a_m * a_m);
 | |
|   VERIFY_IS_APPROX((p * ac).matrix(), p_m * a_m);
 | |
|   VERIFY_IS_APPROX((ac * p).matrix(), a_m * p_m);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Mode, int Options>
 | |
| void transformations_no_scale() {
 | |
|   /* this test covers the following files:
 | |
|   Cross.h Quaternion.h, Transform.h
 | |
| */
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef Matrix<Scalar, 4, 1> Vector4;
 | |
|   typedef Quaternion<Scalar> Quaternionx;
 | |
|   typedef AngleAxis<Scalar> AngleAxisx;
 | |
|   typedef Transform<Scalar, 3, Mode, Options> Transform3;
 | |
|   typedef Translation<Scalar, 3> Translation3;
 | |
|   typedef Matrix<Scalar, 4, 4> Matrix4;
 | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random();
 | |
| 
 | |
|   Transform3 t0, t1, t2;
 | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
 | |
| 
 | |
|   Quaternionx q1, q2;
 | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized());
 | |
| 
 | |
|   t0 = Transform3::Identity();
 | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
 | |
| 
 | |
|   t0.setIdentity();
 | |
|   t1.setIdentity();
 | |
|   v1 = Vector3::Ones();
 | |
|   t0.linear() = q1.toRotationMatrix();
 | |
|   t0.pretranslate(v0);
 | |
|   t1.linear() = q1.conjugate().toRotationMatrix();
 | |
|   t1.translate(-v0);
 | |
| 
 | |
|   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
 | |
| 
 | |
|   t1.fromPositionOrientationScale(v0, q1, v1);
 | |
|   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
 | |
|   VERIFY_IS_APPROX(t1 * v1, t0 * v1);
 | |
| 
 | |
|   // translation * vector
 | |
|   t0.setIdentity();
 | |
|   t0.translate(v0);
 | |
|   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
 | |
| 
 | |
|   // Conversion to matrix.
 | |
|   Transform3 t3;
 | |
|   t3.linear() = q1.toRotationMatrix();
 | |
|   t3.translation() = v1;
 | |
|   Matrix4 m3 = t3.matrix();
 | |
|   VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>()));
 | |
|   // Verify implicit last row is initialized.
 | |
|   VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0));
 | |
| 
 | |
|   VERIFY_IS_APPROX(t3.rotation(), t3.linear());
 | |
|   if (Mode == Isometry) VERIFY(t3.rotation().data() == t3.linear().data());
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Mode, int Options>
 | |
| void transformations_computed_scaling_continuity() {
 | |
|   typedef Matrix<Scalar, 3, 1> Vector3;
 | |
|   typedef Transform<Scalar, 3, Mode, Options> Transform3;
 | |
|   typedef Matrix<Scalar, 3, 3> Matrix3;
 | |
| 
 | |
|   // Given: two transforms that differ by '2*eps'.
 | |
|   Scalar eps(1e-3);
 | |
|   Vector3 v0 = Vector3::Random().normalized(), v1 = Vector3::Random().normalized(), v3 = Vector3::Random().normalized();
 | |
|   Transform3 t0, t1;
 | |
|   // The interesting case is when their determinants have different signs.
 | |
|   Matrix3 rank2 = 50 * v0 * v0.adjoint() + 20 * v1 * v1.adjoint();
 | |
|   t0.linear() = rank2 + eps * v3 * v3.adjoint();
 | |
|   t1.linear() = rank2 - eps * v3 * v3.adjoint();
 | |
| 
 | |
|   // When: computing the rotation-scaling parts
 | |
|   Matrix3 r0, s0, r1, s1;
 | |
|   t0.computeRotationScaling(&r0, &s0);
 | |
|   t1.computeRotationScaling(&r1, &s1);
 | |
| 
 | |
|   // Then: the scaling parts should differ by no more than '2*eps'.
 | |
|   const Scalar c(2.1);  // 2 + room for rounding errors
 | |
|   VERIFY((s0 - s1).norm() < c * eps);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(geo_transformations) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((transformations<double, Affine, AutoAlign>()));
 | |
|     CALL_SUBTEST_1((non_projective_only<double, Affine, AutoAlign>()));
 | |
|     CALL_SUBTEST_1((transformations_computed_scaling_continuity<double, Affine, AutoAlign>()));
 | |
| 
 | |
|     CALL_SUBTEST_2((transformations<float, AffineCompact, AutoAlign>()));
 | |
|     CALL_SUBTEST_2((non_projective_only<float, AffineCompact, AutoAlign>()));
 | |
|     CALL_SUBTEST_2((transform_alignment<float>()));
 | |
| 
 | |
|     CALL_SUBTEST_3((transformations<double, Projective, AutoAlign>()));
 | |
|     CALL_SUBTEST_3((transformations<double, Projective, DontAlign>()));
 | |
|     CALL_SUBTEST_3((transform_alignment<double>()));
 | |
| 
 | |
|     CALL_SUBTEST_4((transformations<float, Affine, RowMajor | AutoAlign>()));
 | |
|     CALL_SUBTEST_4((non_projective_only<float, Affine, RowMajor>()));
 | |
| 
 | |
|     CALL_SUBTEST_5((transformations<double, AffineCompact, RowMajor | AutoAlign>()));
 | |
|     CALL_SUBTEST_5((non_projective_only<double, AffineCompact, RowMajor>()));
 | |
| 
 | |
|     CALL_SUBTEST_6((transformations<double, Projective, RowMajor | AutoAlign>()));
 | |
|     CALL_SUBTEST_6((transformations<double, Projective, RowMajor | DontAlign>()));
 | |
| 
 | |
|     CALL_SUBTEST_7((transform_products<double, 3, RowMajor | AutoAlign>()));
 | |
|     CALL_SUBTEST_7((transform_products<float, 2, AutoAlign>()));
 | |
| 
 | |
|     CALL_SUBTEST_8((transform_associativity<double, 2, ColMajor>(
 | |
|         Rotation2D<double>(internal::random<double>() * double(EIGEN_PI)))));
 | |
|     CALL_SUBTEST_8((transform_associativity<double, 3, ColMajor>(Quaterniond::UnitRandom())));
 | |
| 
 | |
|     CALL_SUBTEST_9((transformations_no_scale<double, Affine, AutoAlign>()));
 | |
|     CALL_SUBTEST_9((transformations_no_scale<double, Isometry, AutoAlign>()));
 | |
|   }
 | |
| }
 | 
