152 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| static bool g_called;
 | |
| #define EIGEN_SCALAR_BINARY_OP_PLUGIN \
 | |
|   { g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); }
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void linearStructure(const MatrixType& m) {
 | |
|   using std::abs;
 | |
|   /* this test covers the following files:
 | |
|      CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
 | |
|   */
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do
 | |
|   // to test it, hence I consider that we will have tested Random.h
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols);
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
|   while (abs(s1) < RealScalar(1e-3)) s1 = internal::random<Scalar>();
 | |
| 
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(-(-m1), m1);
 | |
|   VERIFY_IS_APPROX(m1 + m1, 2 * m1);
 | |
|   VERIFY_IS_APPROX(m1 + m2 - m1, m2);
 | |
|   VERIFY_IS_APPROX(-m2 + m1 + m2, m1);
 | |
|   VERIFY_IS_APPROX(m1 * s1, s1 * m1);
 | |
|   VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2);
 | |
|   VERIFY_IS_APPROX((-m1 + m2) * s1, -s1 * m1 + s1 * m2);
 | |
|   m3 = m2;
 | |
|   m3 += m1;
 | |
|   VERIFY_IS_APPROX(m3, m1 + m2);
 | |
|   m3 = m2;
 | |
|   m3 -= m1;
 | |
|   VERIFY_IS_APPROX(m3, m2 - m1);
 | |
|   m3 = m2;
 | |
|   m3 *= s1;
 | |
|   VERIFY_IS_APPROX(m3, s1 * m2);
 | |
|   if (!NumTraits<Scalar>::IsInteger) {
 | |
|     m3 = m2;
 | |
|     m3 /= s1;
 | |
|     VERIFY_IS_APPROX(m3, m2 / s1);
 | |
|   }
 | |
| 
 | |
|   // again, test operator() to check const-qualification
 | |
|   VERIFY_IS_APPROX((-m1)(r, c), -(m1(r, c)));
 | |
|   VERIFY_IS_APPROX((m1 - m2)(r, c), (m1(r, c)) - (m2(r, c)));
 | |
|   VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c)));
 | |
|   VERIFY_IS_APPROX((s1 * m1)(r, c), s1 * (m1(r, c)));
 | |
|   VERIFY_IS_APPROX((m1 * s1)(r, c), (m1(r, c)) * s1);
 | |
|   if (!NumTraits<Scalar>::IsInteger) VERIFY_IS_APPROX((m1 / s1)(r, c), (m1(r, c)) / s1);
 | |
| 
 | |
|   // use .block to disable vectorization and compare to the vectorized version
 | |
|   VERIFY_IS_APPROX(m1 + m1.block(0, 0, rows, cols), m1 + m1);
 | |
|   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), m1.cwiseProduct(m1));
 | |
|   VERIFY_IS_APPROX(m1 - m1.block(0, 0, rows, cols), m1 - m1);
 | |
|   VERIFY_IS_APPROX(m1.block(0, 0, rows, cols) * s1, m1 * s1);
 | |
| }
 | |
| 
 | |
| // Make sure that complex * real and real * complex are properly optimized
 | |
| template <typename MatrixType>
 | |
| void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
| 
 | |
|   RealScalar s = internal::random<RealScalar>();
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols);
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(s * m1, Scalar(s) * m1);
 | |
|   VERIFY(g_called && "real * matrix<complex> not properly optimized");
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(m1 * s, m1 * Scalar(s));
 | |
|   VERIFY(g_called && "matrix<complex> * real not properly optimized");
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(m1 / s, m1 / Scalar(s));
 | |
|   VERIFY(g_called && "matrix<complex> / real not properly optimized");
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(s + m1.array(), Scalar(s) + m1.array());
 | |
|   VERIFY(g_called && "real + matrix<complex> not properly optimized");
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(m1.array() + s, m1.array() + Scalar(s));
 | |
|   VERIFY(g_called && "matrix<complex> + real not properly optimized");
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(s - m1.array(), Scalar(s) - m1.array());
 | |
|   VERIFY(g_called && "real - matrix<complex> not properly optimized");
 | |
| 
 | |
|   g_called = false;
 | |
|   VERIFY_IS_APPROX(m1.array() - s, m1.array() - Scalar(s));
 | |
|   VERIFY(g_called && "matrix<complex> - real not properly optimized");
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void linearstructure_overflow() {
 | |
|   // make sure that /=scalar and /scalar do not overflow
 | |
|   // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
 | |
|   Matrix4d m2, m3;
 | |
|   m3 = m2 = Matrix4d::Random() * 1e-20;
 | |
|   m2 = m2 / 4.9e-320;
 | |
|   VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
 | |
|   m3 /= 4.9e-320;
 | |
|   VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(linearstructure) {
 | |
|   g_called = true;
 | |
|   VERIFY(g_called);  // avoid `unneeded-internal-declaration` warning.
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(linearStructure(Matrix<float, 1, 1>()));
 | |
|     CALL_SUBTEST_2(linearStructure(Matrix2f()));
 | |
|     CALL_SUBTEST_3(linearStructure(Vector3d()));
 | |
|     CALL_SUBTEST_4(linearStructure(Matrix4d()));
 | |
|     CALL_SUBTEST_5(linearStructure(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                                              internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_6(linearStructure(
 | |
|         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_7(linearStructure(
 | |
|         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_8(linearStructure(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                                              internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_9(linearStructure(
 | |
|         ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_10(linearStructure(
 | |
|         ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
| 
 | |
|     CALL_SUBTEST_11(real_complex<Matrix4cd>());
 | |
|     CALL_SUBTEST_11(real_complex<MatrixXcf>(10, 10));
 | |
|     CALL_SUBTEST_11(real_complex<ArrayXXcf>(10, 10));
 | |
|   }
 | |
|   CALL_SUBTEST_4(linearstructure_overflow<0>());
 | |
| }
 | 
