102 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
 | |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #define TEST_ENABLE_TEMPORARY_TRACKING
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <int N, typename XprType>
 | |
| void use_n_times(const XprType& xpr) {
 | |
|   typename internal::nested_eval<XprType, N>::type mat(xpr);
 | |
|   typename XprType::PlainObject res(mat.rows(), mat.cols());
 | |
|   nb_temporaries--;  // remove res
 | |
|   res.setZero();
 | |
|   for (int i = 0; i < N; ++i) res += mat;
 | |
| }
 | |
| 
 | |
| template <int N, typename ReferenceType, typename XprType>
 | |
| bool verify_eval_type(const XprType&, const ReferenceType&) {
 | |
|   typedef typename internal::nested_eval<XprType, N>::type EvalType;
 | |
|   return internal::is_same<internal::remove_all_t<EvalType>, internal::remove_all_t<ReferenceType>>::value;
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void run_nesting_ops_1(const MatrixType& _m) {
 | |
|   typename internal::nested_eval<MatrixType, 2>::type m(_m);
 | |
| 
 | |
|   // Make really sure that we are in debug mode!
 | |
|   VERIFY_RAISES_ASSERT(eigen_assert(false));
 | |
| 
 | |
|   // The only intention of these tests is to ensure that this code does
 | |
|   // not trigger any asserts or segmentation faults... more to come.
 | |
|   VERIFY_IS_APPROX((m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum());
 | |
|   VERIFY_IS_APPROX((m.transpose() * m).diagonal().array().abs().sum(),
 | |
|                    (m.transpose() * m).diagonal().array().abs().sum());
 | |
| 
 | |
|   VERIFY_IS_APPROX((m.transpose() * m).array().abs().sum(), (m.transpose() * m).array().abs().sum());
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void run_nesting_ops_2(const MatrixType& _m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   Index rows = _m.rows();
 | |
|   Index cols = _m.cols();
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols);
 | |
|   Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, ColMajor> m2;
 | |
| 
 | |
|   if ((MatrixType::SizeAtCompileTime == Dynamic)) {
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<1>(m1 + m1 * m1), 1);
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<10>(m1 + m1 * m1), 1);
 | |
| 
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<1>(m1.template triangularView<Lower>().solve(m1.col(0))), 1);
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<10>(m1.template triangularView<Lower>().solve(m1.col(0))), 1);
 | |
| 
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<1>(Scalar(2) * m1.template triangularView<Lower>().solve(m1.col(0))),
 | |
|                             2);  // FIXME could be one by applying the scaling in-place on the solve result
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<1>(m1.col(0) + m1.template triangularView<Lower>().solve(m1.col(0))),
 | |
|                             2);  // FIXME could be one by adding m1.col() inplace
 | |
|     VERIFY_EVALUATION_COUNT(use_n_times<10>(m1.col(0) + m1.template triangularView<Lower>().solve(m1.col(0))), 2);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     VERIFY(verify_eval_type<10>(m1, m1));
 | |
|     if (!NumTraits<Scalar>::IsComplex) {
 | |
|       VERIFY(verify_eval_type<3>(2 * m1, 2 * m1));
 | |
|       VERIFY(verify_eval_type<4>(2 * m1, m1));
 | |
|     } else {
 | |
|       VERIFY(verify_eval_type<2>(2 * m1, 2 * m1));
 | |
|       VERIFY(verify_eval_type<3>(2 * m1, m1));
 | |
|     }
 | |
|     VERIFY(verify_eval_type<2>(m1 + m1, m1 + m1));
 | |
|     VERIFY(verify_eval_type<3>(m1 + m1, m1));
 | |
|     VERIFY(verify_eval_type<1>(m1 * m1.transpose(), m2));
 | |
|     VERIFY(verify_eval_type<1>(m1 * (m1 + m1).transpose(), m2));
 | |
|     VERIFY(verify_eval_type<2>(m1 * m1.transpose(), m2));
 | |
|     VERIFY(verify_eval_type<1>(m1 + m1 * m1, m1));
 | |
| 
 | |
|     VERIFY(verify_eval_type<1>(m1.template triangularView<Lower>().solve(m1), m1));
 | |
|     VERIFY(verify_eval_type<1>(m1 + m1.template triangularView<Lower>().solve(m1), m1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(nesting_ops) {
 | |
|   CALL_SUBTEST_1(run_nesting_ops_1(MatrixXf::Random(25, 25)));
 | |
|   CALL_SUBTEST_2(run_nesting_ops_1(MatrixXcd::Random(25, 25)));
 | |
|   CALL_SUBTEST_3(run_nesting_ops_1(Matrix4f::Random()));
 | |
|   CALL_SUBTEST_4(run_nesting_ops_1(Matrix2d::Random()));
 | |
| 
 | |
|   Index s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE);
 | |
|   CALL_SUBTEST_1(run_nesting_ops_2(MatrixXf(s, s)));
 | |
|   CALL_SUBTEST_2(run_nesting_ops_2(MatrixXcd(s, s)));
 | |
|   CALL_SUBTEST_3(run_nesting_ops_2(Matrix4f()));
 | |
|   CALL_SUBTEST_4(run_nesting_ops_2(Matrix2d()));
 | |
|   TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| }
 | 
