232 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| // discard stack allocation as that too bypasses malloc
 | |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0
 | |
| // heap allocation will raise an assert if enabled at runtime
 | |
| #define EIGEN_RUNTIME_NO_MALLOC
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/Cholesky>
 | |
| #include <Eigen/Eigenvalues>
 | |
| #include <Eigen/LU>
 | |
| #include <Eigen/QR>
 | |
| #include <Eigen/SVD>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void nomalloc(const MatrixType& m) {
 | |
|   /* this test check no dynamic memory allocation are issued with fixed-size matrices
 | |
|    */
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols);
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
| 
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2);
 | |
|   VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c)));
 | |
|   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), (m1.array() * m1.array()).matrix());
 | |
|   VERIFY_IS_APPROX((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2));
 | |
| 
 | |
|   m2.col(0).noalias() = m1 * m1.col(0);
 | |
|   m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
 | |
|   m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
 | |
|   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
 | |
| 
 | |
|   m2.row(0).noalias() = m1.row(0) * m1;
 | |
|   m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
 | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
 | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
 | |
|   VERIFY_IS_APPROX(m2, m2);
 | |
| 
 | |
|   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
 | |
|   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
 | |
|   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
 | |
|   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
 | |
| 
 | |
|   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
 | |
|   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
 | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
 | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
 | |
|   VERIFY_IS_APPROX(m2, m2);
 | |
| 
 | |
|   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
 | |
|   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
 | |
|   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
 | |
|   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
 | |
| 
 | |
|   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
 | |
|   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
 | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
 | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
 | |
|   VERIFY_IS_APPROX(m2, m2);
 | |
| 
 | |
|   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), -1);
 | |
|   m2.template selfadjointView<Upper>().rankUpdate(m1.row(0), -1);
 | |
|   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0));  // rank-2
 | |
| 
 | |
|   // The following fancy matrix-matrix products are not safe yet regarding static allocation
 | |
|   m2.template selfadjointView<Lower>().rankUpdate(m1);
 | |
|   m2 += m2.template triangularView<Upper>() * m1;
 | |
|   m2.template triangularView<Upper>() = m2 * m2;
 | |
|   m1 += m1.template selfadjointView<Lower>() * m2;
 | |
|   VERIFY_IS_APPROX(m2, m2);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void ctms_decompositions() {
 | |
|   const int maxSize = 16;
 | |
|   const int size = 12;
 | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> Matrix;
 | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, 0, maxSize, 1> Vector;
 | |
| 
 | |
|   typedef Eigen::Matrix<std::complex<Scalar>, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> ComplexMatrix;
 | |
| 
 | |
|   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
 | |
|   Matrix X(size, size);
 | |
|   const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
 | |
|   const Matrix saA = A.adjoint() * A;
 | |
|   const Vector b(Vector::Random(size));
 | |
|   Vector x(size);
 | |
| 
 | |
|   // Cholesky module
 | |
|   Eigen::LLT<Matrix> LLT;
 | |
|   LLT.compute(A);
 | |
|   X = LLT.solve(B);
 | |
|   x = LLT.solve(b);
 | |
|   Eigen::LDLT<Matrix> LDLT;
 | |
|   LDLT.compute(A);
 | |
|   X = LDLT.solve(B);
 | |
|   x = LDLT.solve(b);
 | |
| 
 | |
|   // Eigenvalues module
 | |
|   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;
 | |
|   hessDecomp.compute(complexA);
 | |
|   Eigen::ComplexSchur<ComplexMatrix> cSchur(size);
 | |
|   cSchur.compute(complexA);
 | |
|   Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver;
 | |
|   cEigSolver.compute(complexA);
 | |
|   Eigen::EigenSolver<Matrix> eigSolver;
 | |
|   eigSolver.compute(A);
 | |
|   Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size);
 | |
|   saEigSolver.compute(saA);
 | |
|   Eigen::Tridiagonalization<Matrix> tridiag;
 | |
|   tridiag.compute(saA);
 | |
| 
 | |
|   // LU module
 | |
|   Eigen::PartialPivLU<Matrix> ppLU;
 | |
|   ppLU.compute(A);
 | |
|   X = ppLU.solve(B);
 | |
|   x = ppLU.solve(b);
 | |
|   Eigen::FullPivLU<Matrix> fpLU;
 | |
|   fpLU.compute(A);
 | |
|   X = fpLU.solve(B);
 | |
|   x = fpLU.solve(b);
 | |
| 
 | |
|   // QR module
 | |
|   Eigen::HouseholderQR<Matrix> hQR;
 | |
|   hQR.compute(A);
 | |
|   X = hQR.solve(B);
 | |
|   x = hQR.solve(b);
 | |
|   Eigen::ColPivHouseholderQR<Matrix> cpQR;
 | |
|   cpQR.compute(A);
 | |
|   X = cpQR.solve(B);
 | |
|   x = cpQR.solve(b);
 | |
|   Eigen::FullPivHouseholderQR<Matrix> fpQR;
 | |
|   fpQR.compute(A);
 | |
|   // FIXME X = fpQR.solve(B);
 | |
|   x = fpQR.solve(b);
 | |
| 
 | |
|   // SVD module
 | |
|   Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD;
 | |
|   jSVD.compute(A);
 | |
| }
 | |
| 
 | |
| void test_zerosized() {
 | |
|   // default constructors:
 | |
|   Eigen::MatrixXd A;
 | |
|   Eigen::VectorXd v;
 | |
|   // explicit zero-sized:
 | |
|   Eigen::ArrayXXd A0(0, 0);
 | |
|   Eigen::ArrayXd v0(0);
 | |
| 
 | |
|   // assigning empty objects to each other:
 | |
|   A = A0;
 | |
|   v = v0;
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void test_reference(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor };
 | |
|   enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor };
 | |
|   Index rows = m.rows(), cols = m.cols();
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag> MatrixX;
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
 | |
|   // Dynamic reference:
 | |
|   typedef Eigen::Ref<const MatrixX> Ref;
 | |
|   typedef Eigen::Ref<const MatrixXT> RefT;
 | |
| 
 | |
|   Ref r1(m);
 | |
|   Ref r2(m.block(rows / 3, cols / 4, rows / 2, cols / 2));
 | |
|   RefT r3(m.transpose());
 | |
|   RefT r4(m.topLeftCorner(rows / 2, cols / 2).transpose());
 | |
| 
 | |
|   VERIFY_RAISES_ASSERT(RefT r5(m));
 | |
|   VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
 | |
|   VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
 | |
| 
 | |
|   // Copy constructors shall also never malloc
 | |
|   Ref r8 = r1;
 | |
|   RefT r9 = r3;
 | |
| 
 | |
|   // Initializing from a compatible Ref shall also never malloc
 | |
|   Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10 = r8, r11 = m;
 | |
| 
 | |
|   // Initializing from an incompatible Ref will malloc:
 | |
|   typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
 | |
|   VERIFY_RAISES_ASSERT(RefAligned r12 = r10);
 | |
|   VERIFY_RAISES_ASSERT(Ref r13 = r10);  // r10 has more dynamic strides
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(nomalloc) {
 | |
|   // create some dynamic objects
 | |
|   Eigen::MatrixXd M1 = MatrixXd::Random(3, 3);
 | |
|   Ref<const MatrixXd> R1 = 2.0 * M1;  // Ref requires temporary
 | |
| 
 | |
|   // from here on prohibit malloc:
 | |
|   Eigen::internal::set_is_malloc_allowed(false);
 | |
| 
 | |
|   // check that our operator new is indeed called:
 | |
|   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3, 3)));
 | |
|   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()));
 | |
|   CALL_SUBTEST_2(nomalloc(Matrix4d()));
 | |
|   CALL_SUBTEST_3(nomalloc(Matrix<float, 32, 32>()));
 | |
| 
 | |
|   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
 | |
|   CALL_SUBTEST_4(ctms_decompositions<float>());
 | |
| 
 | |
|   CALL_SUBTEST_5(test_zerosized());
 | |
| 
 | |
|   CALL_SUBTEST_6(test_reference(Matrix<float, 32, 32>()));
 | |
|   CALL_SUBTEST_7(test_reference(R1));
 | |
|   CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
 | |
| 
 | |
|   // freeing is now possible
 | |
|   Eigen::internal::set_is_malloc_allowed(true);
 | |
| }
 | 
