1527 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1527 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "packetmath_test_shared.h"
 | |
| #include "random_without_cast_overflow.h"
 | |
| #include "packet_ostream.h"
 | |
| 
 | |
| template <typename T>
 | |
| inline T REF_ADD(const T& a, const T& b) {
 | |
|   return a + b;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_SUB(const T& a, const T& b) {
 | |
|   return a - b;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_MUL(const T& a, const T& b) {
 | |
|   return a * b;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_MADD(const T& a, const T& b, const T& c) {
 | |
|   return a * b + c;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_MSUB(const T& a, const T& b, const T& c) {
 | |
|   return a * b - c;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_NMADD(const T& a, const T& b, const T& c) {
 | |
|   return (-a * b) + c;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_NMSUB(const T& a, const T& b, const T& c) {
 | |
|   return (-a * b) - c;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_DIV(const T& a, const T& b) {
 | |
|   return a / b;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_RECIPROCAL(const T& a) {
 | |
|   return T(1) / a;
 | |
| }
 | |
| template <typename T>
 | |
| inline T REF_ABS_DIFF(const T& a, const T& b) {
 | |
|   return a > b ? a - b : b - a;
 | |
| }
 | |
| 
 | |
| // Specializations for bool.
 | |
| template <>
 | |
| inline bool REF_ADD(const bool& a, const bool& b) {
 | |
|   return a || b;
 | |
| }
 | |
| template <>
 | |
| inline bool REF_SUB(const bool& a, const bool& b) {
 | |
|   return a ^ b;
 | |
| }
 | |
| template <>
 | |
| inline bool REF_MUL(const bool& a, const bool& b) {
 | |
|   return a && b;
 | |
| }
 | |
| template <>
 | |
| inline bool REF_MADD(const bool& a, const bool& b, const bool& c) {
 | |
|   return (a && b) || c;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T REF_FREXP(const T& x, T& exp) {
 | |
|   int iexp = 0;
 | |
|   EIGEN_USING_STD(frexp)
 | |
|   const T out = static_cast<T>(frexp(x, &iexp));
 | |
|   exp = static_cast<T>(iexp);
 | |
| 
 | |
|   // The exponent value is unspecified if the input is inf or NaN, but MSVC
 | |
|   // seems to set it to 1.  We need to set it back to zero for consistency.
 | |
|   if (!(numext::isfinite)(x)) {
 | |
|     exp = T(0);
 | |
|   }
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T REF_LDEXP(const T& x, const T& exp) {
 | |
|   EIGEN_USING_STD(ldexp)
 | |
|   return static_cast<T>(ldexp(x, static_cast<int>(exp)));
 | |
| }
 | |
| 
 | |
| // Uses pcast to cast from one array to another.
 | |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
 | |
| struct pcast_array;
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket, int TgtCoeffRatio>
 | |
| struct pcast_array<SrcPacket, TgtPacket, 1, TgtCoeffRatio> {
 | |
|   typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
 | |
|   typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
 | |
|   static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) {
 | |
|     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
 | |
|     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
 | |
|     size_t i;
 | |
|     for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) {
 | |
|       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(internal::ploadu<SrcPacket>(src + i)));
 | |
|     }
 | |
|     // Leftovers that cannot be loaded into a packet.
 | |
|     for (; i < size; ++i) {
 | |
|       dst[i] = static_cast<TgtScalar>(src[i]);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket>
 | |
| struct pcast_array<SrcPacket, TgtPacket, 2, 1> {
 | |
|   static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
 | |
|                    typename internal::unpacket_traits<TgtPacket>::type* dst) {
 | |
|     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
 | |
|     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
 | |
|     for (size_t i = 0; i < size; i += TgtPacketSize) {
 | |
|       SrcPacket a = internal::ploadu<SrcPacket>(src + i);
 | |
|       SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
 | |
|       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket>
 | |
| struct pcast_array<SrcPacket, TgtPacket, 4, 1> {
 | |
|   static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
 | |
|                    typename internal::unpacket_traits<TgtPacket>::type* dst) {
 | |
|     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
 | |
|     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
 | |
|     for (size_t i = 0; i < size; i += TgtPacketSize) {
 | |
|       SrcPacket a = internal::ploadu<SrcPacket>(src + i);
 | |
|       SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
 | |
|       SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
 | |
|       SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
 | |
|       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket>
 | |
| struct pcast_array<SrcPacket, TgtPacket, 8, 1> {
 | |
|   static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
 | |
|                    typename internal::unpacket_traits<TgtPacket>::type* dst) {
 | |
|     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
 | |
|     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
 | |
|     for (size_t i = 0; i < size; i += TgtPacketSize) {
 | |
|       SrcPacket a = internal::ploadu<SrcPacket>(src + i);
 | |
|       SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
 | |
|       SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
 | |
|       SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
 | |
|       SrcPacket e = internal::ploadu<SrcPacket>(src + i + 4 * SrcPacketSize);
 | |
|       SrcPacket f = internal::ploadu<SrcPacket>(src + i + 5 * SrcPacketSize);
 | |
|       SrcPacket g = internal::ploadu<SrcPacket>(src + i + 6 * SrcPacketSize);
 | |
|       SrcPacket h = internal::ploadu<SrcPacket>(src + i + 7 * SrcPacketSize);
 | |
|       internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d, e, f, g, h));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio, bool CanCast = false>
 | |
| struct test_cast_helper;
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
 | |
| struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, false> {
 | |
|   static void run() {}
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
 | |
| struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true> {
 | |
|   static void run() {
 | |
|     typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
 | |
|     typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
 | |
|     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
 | |
|     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
 | |
|     static const int BlockSize = SrcPacketSize * SrcCoeffRatio;
 | |
|     eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched.");
 | |
| 
 | |
|     static const int DataSize = 10 * BlockSize;
 | |
|     EIGEN_ALIGN_MAX SrcScalar data1[DataSize];
 | |
|     EIGEN_ALIGN_MAX TgtScalar data2[DataSize];
 | |
|     EIGEN_ALIGN_MAX TgtScalar ref[DataSize];
 | |
| 
 | |
|     // Construct a packet of scalars that will not overflow when casting
 | |
|     for (int i = 0; i < DataSize; ++i) {
 | |
|       data1[i] = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value();
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < DataSize; ++i) {
 | |
|       ref[i] = static_cast<const TgtScalar>(data1[i]);
 | |
|     }
 | |
| 
 | |
|     pcast_array<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio>::cast(data1, DataSize, data2);
 | |
| 
 | |
|     VERIFY(test::areApprox(ref, data2, DataSize) && "internal::pcast<>");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtPacket>
 | |
| struct test_cast {
 | |
|   static void run() {
 | |
|     typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
 | |
|     typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
 | |
|     typedef typename internal::type_casting_traits<SrcScalar, TgtScalar> TypeCastingTraits;
 | |
|     static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio;
 | |
|     static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio;
 | |
|     static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
 | |
|     static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
 | |
|     static const bool HasCast =
 | |
|         internal::unpacket_traits<SrcPacket>::vectorizable && internal::unpacket_traits<TgtPacket>::vectorizable &&
 | |
|         TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio);
 | |
|     test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, HasCast>::run();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtScalar,
 | |
|           typename TgtPacket = typename internal::packet_traits<TgtScalar>::type,
 | |
|           bool Vectorized = internal::packet_traits<TgtScalar>::Vectorizable,
 | |
|           bool HasHalf = !internal::is_same<typename internal::unpacket_traits<TgtPacket>::half, TgtPacket>::value>
 | |
| struct test_cast_runner;
 | |
| 
 | |
| template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
 | |
| struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, false> {
 | |
|   static void run() { test_cast<SrcPacket, TgtPacket>::run(); }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
 | |
| struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, true> {
 | |
|   static void run() {
 | |
|     test_cast<SrcPacket, TgtPacket>::run();
 | |
|     test_cast_runner<SrcPacket, TgtScalar, typename internal::unpacket_traits<TgtPacket>::half>::run();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
 | |
| struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, false, false> {
 | |
|   static void run() {}
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename Packet, typename EnableIf = void>
 | |
| struct packetmath_pcast_ops_runner {
 | |
|   static void run() {
 | |
|     test_cast_runner<Packet, float>::run();
 | |
|     test_cast_runner<Packet, double>::run();
 | |
|     test_cast_runner<Packet, int8_t>::run();
 | |
|     test_cast_runner<Packet, uint8_t>::run();
 | |
|     test_cast_runner<Packet, int16_t>::run();
 | |
|     test_cast_runner<Packet, uint16_t>::run();
 | |
|     test_cast_runner<Packet, int32_t>::run();
 | |
|     test_cast_runner<Packet, uint32_t>::run();
 | |
|     test_cast_runner<Packet, int64_t>::run();
 | |
|     test_cast_runner<Packet, uint64_t>::run();
 | |
|     test_cast_runner<Packet, bool>::run();
 | |
|     test_cast_runner<Packet, std::complex<float>>::run();
 | |
|     test_cast_runner<Packet, std::complex<double>>::run();
 | |
|     test_cast_runner<Packet, half>::run();
 | |
|     test_cast_runner<Packet, bfloat16>::run();
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Only some types support cast from std::complex<>.
 | |
| template <typename Scalar, typename Packet>
 | |
| struct packetmath_pcast_ops_runner<Scalar, Packet, std::enable_if_t<NumTraits<Scalar>::IsComplex>> {
 | |
|   static void run() {
 | |
|     test_cast_runner<Packet, std::complex<float>>::run();
 | |
|     test_cast_runner<Packet, std::complex<double>>::run();
 | |
|     test_cast_runner<Packet, half>::run();
 | |
|     test_cast_runner<Packet, bfloat16>::run();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath_boolean_mask_ops() {
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|   const int size = 2 * PacketSize;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[size];
 | |
|   EIGEN_ALIGN_MAX Scalar data2[size];
 | |
|   EIGEN_ALIGN_MAX Scalar ref[size];
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = internal::random<Scalar>();
 | |
|   }
 | |
|   CHECK_CWISE1(internal::ptrue, internal::ptrue);
 | |
|   CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot);
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = Scalar(i);
 | |
|     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|   }
 | |
| 
 | |
|   CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
 | |
| 
 | |
|   // Test (-0) == (0) for signed operations
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = Scalar(-0.0);
 | |
|     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|   }
 | |
|   CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
 | |
| 
 | |
|   // Test NaN
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = NumTraits<Scalar>::quiet_NaN();
 | |
|     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|   }
 | |
|   CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath_boolean_mask_ops_real() {
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|   const int size = 2 * PacketSize;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[size];
 | |
|   EIGEN_ALIGN_MAX Scalar data2[size];
 | |
|   EIGEN_ALIGN_MAX Scalar ref[size];
 | |
| 
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = internal::random<Scalar>();
 | |
|     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|   }
 | |
| 
 | |
|   CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
 | |
| 
 | |
|   // Test (-0) <=/< (0) for signed operations
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = Scalar(-0.0);
 | |
|     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|   }
 | |
|   CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
 | |
| 
 | |
|   // Test NaN
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = NumTraits<Scalar>::quiet_NaN();
 | |
|     data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|   }
 | |
|   CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet, typename EnableIf = void>
 | |
| struct packetmath_boolean_mask_ops_notcomplex_test {
 | |
|   static void run() {}
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| struct packetmath_boolean_mask_ops_notcomplex_test<
 | |
|     Scalar, Packet,
 | |
|     std::enable_if_t<internal::packet_traits<Scalar>::HasCmp && !internal::is_same<Scalar, bool>::value>> {
 | |
|   static void run() {
 | |
|     const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|     const int size = 2 * PacketSize;
 | |
|     EIGEN_ALIGN_MAX Scalar data1[size];
 | |
|     EIGEN_ALIGN_MAX Scalar data2[size];
 | |
|     EIGEN_ALIGN_MAX Scalar ref[size];
 | |
| 
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       data1[i] = internal::random<Scalar>();
 | |
|       data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|     }
 | |
| 
 | |
|     CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
 | |
|     CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
 | |
| 
 | |
|     // Test (-0) <=/< (0) for signed operations
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       data1[i] = Scalar(-0.0);
 | |
|       data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|     }
 | |
|     CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
 | |
|     CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
 | |
| 
 | |
|     // Test NaN
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       data1[i] = NumTraits<Scalar>::quiet_NaN();
 | |
|       data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
 | |
|     }
 | |
|     CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
 | |
|     CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Packet16b representing bool does not support ptrue, pandnot or pcmp_eq, since
 | |
| // the scalar path (for some compilers) compute the bitwise and with 0x1 of the
 | |
| // results to keep the value in [0,1].
 | |
| template <>
 | |
| void packetmath_boolean_mask_ops<bool, internal::packet_traits<bool>::type>() {}
 | |
| 
 | |
| template <typename Scalar, typename Packet, typename EnableIf = void>
 | |
| struct packetmath_minus_zero_add_test {
 | |
|   static void run() {}
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| struct packetmath_minus_zero_add_test<Scalar, Packet, std::enable_if_t<!NumTraits<Scalar>::IsInteger>> {
 | |
|   static void run() {
 | |
|     const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|     const int size = 2 * PacketSize;
 | |
|     EIGEN_ALIGN_MAX Scalar data1[size] = {};
 | |
|     EIGEN_ALIGN_MAX Scalar data2[size] = {};
 | |
|     EIGEN_ALIGN_MAX Scalar ref[size] = {};
 | |
| 
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       data1[i] = Scalar(-0.0);
 | |
|       data1[i + PacketSize] = Scalar(-0.0);
 | |
|     }
 | |
|     CHECK_CWISE2_IF(internal::packet_traits<Scalar>::HasAdd, REF_ADD, internal::padd);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Ensure optimization barrier compiles and doesn't modify contents.
 | |
| // Only applies to raw types, so will not work for std::complex, Eigen::half
 | |
| // or Eigen::bfloat16. For those you would need to refer to an underlying
 | |
| // storage element.
 | |
| template <typename Packet, typename EnableIf = void>
 | |
| struct eigen_optimization_barrier_test {
 | |
|   static void run() {}
 | |
| };
 | |
| 
 | |
| template <typename Packet>
 | |
| struct eigen_optimization_barrier_test<
 | |
|     Packet, std::enable_if_t<!NumTraits<Packet>::IsComplex && !internal::is_same<Packet, Eigen::half>::value &&
 | |
|                              !internal::is_same<Packet, Eigen::bfloat16>::value>> {
 | |
|   static void run() {
 | |
|     typedef typename internal::unpacket_traits<Packet>::type Scalar;
 | |
|     Scalar s = internal::random<Scalar>();
 | |
|     Packet barrier = internal::pset1<Packet>(s);
 | |
|     EIGEN_OPTIMIZATION_BARRIER(barrier);
 | |
|     eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath() {
 | |
|   typedef internal::packet_traits<Scalar> PacketTraits;
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
| 
 | |
|   if (g_first_pass)
 | |
|     std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '"
 | |
|               << typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n";
 | |
| 
 | |
|   const int max_size = PacketSize > 4 ? PacketSize : 4;
 | |
|   const int size = PacketSize * max_size;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[size];
 | |
|   EIGEN_ALIGN_MAX Scalar data2[size];
 | |
|   EIGEN_ALIGN_MAX Scalar data3[size];
 | |
|   EIGEN_ALIGN_MAX Scalar ref[size];
 | |
|   RealScalar refvalue = RealScalar(0);
 | |
| 
 | |
|   eigen_optimization_barrier_test<Packet>::run();
 | |
|   eigen_optimization_barrier_test<Scalar>::run();
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|     data2[i] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|     refvalue = (std::max)(refvalue, numext::abs(data1[i]));
 | |
|   }
 | |
| 
 | |
|   internal::pstore(data2, internal::pload<Packet>(data1));
 | |
|   VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store");
 | |
| 
 | |
|   for (int offset = 0; offset < PacketSize; ++offset) {
 | |
|     internal::pstore(data2, internal::ploadu<Packet>(data1 + offset));
 | |
|     VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu");
 | |
|   }
 | |
| 
 | |
|   for (int offset = 0; offset < PacketSize; ++offset) {
 | |
|     internal::pstoreu(data2 + offset, internal::pload<Packet>(data1));
 | |
|     VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu");
 | |
|   }
 | |
| 
 | |
|   for (int M = 0; M < PacketSize; ++M) {
 | |
|     for (int N = 0; N <= PacketSize; ++N) {
 | |
|       for (int j = 0; j < size; ++j) {
 | |
|         data1[j] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|         data2[j] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|         refvalue = (std::max)(refvalue, numext::abs(data1[j]));
 | |
|       }
 | |
| 
 | |
|       if (M == 0) {
 | |
|         internal::pstore_partial(data2, internal::pload_partial<Packet>(data1, N), N);
 | |
|         VERIFY(test::areApprox(data1, data2, N) && "aligned loadN/storeN");
 | |
| 
 | |
|         for (int offset = 0; offset < PacketSize; ++offset) {
 | |
|           internal::pstore_partial(data2, internal::ploadu_partial<Packet>(data1 + offset, N), N);
 | |
|           VERIFY(test::areApprox(data1 + offset, data2, N) && "internal::ploadu_partial");
 | |
|         }
 | |
| 
 | |
|         for (int offset = 0; offset < PacketSize; ++offset) {
 | |
|           internal::pstoreu_partial(data2 + offset, internal::pload_partial<Packet>(data1, N), N);
 | |
|           VERIFY(test::areApprox(data1, data2 + offset, N) && "internal::pstoreu_partial");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (N + M > PacketSize) continue;  // Don't read or write past end of Packet
 | |
| 
 | |
|       internal::pstore_partial(data2, internal::pload_partial<Packet>(data1, N, M), N, M);
 | |
|       VERIFY(test::areApprox(data1, data2, N) && "aligned offset loadN/storeN");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (internal::unpacket_traits<Packet>::masked_load_available) {
 | |
|     test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h;
 | |
|     unsigned long long max_umask = (0x1ull << PacketSize);
 | |
| 
 | |
|     for (int offset = 0; offset < PacketSize; ++offset) {
 | |
|       for (unsigned long long umask = 0; umask < max_umask; ++umask) {
 | |
|         h.store(data2, h.load(data1 + offset, umask));
 | |
|         for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
 | |
|         VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (internal::unpacket_traits<Packet>::masked_store_available) {
 | |
|     test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h;
 | |
|     unsigned long long max_umask = (0x1ull << PacketSize);
 | |
| 
 | |
|     for (int offset = 0; offset < PacketSize; ++offset) {
 | |
|       for (unsigned long long umask = 0; umask < max_umask; ++umask) {
 | |
|         internal::pstore(data2, internal::pset1<Packet>(Scalar(0)));
 | |
|         h.store(data2, h.loadu(data1 + offset), umask);
 | |
|         for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
 | |
|         VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd);
 | |
|   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub);
 | |
|   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul);
 | |
| 
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd);
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub);
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul);
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
 | |
| 
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasNegate, internal::negate, internal::pnegate);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasReciprocal, REF_RECIPROCAL, internal::preciprocal);
 | |
|   CHECK_CWISE1(numext::conj, internal::pconj);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign);
 | |
| 
 | |
|   for (int offset = 0; offset < 3; ++offset) {
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset];
 | |
|     internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
 | |
|     VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1");
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize];
 | |
|     Packet A0, A1, A2, A3;
 | |
|     internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3);
 | |
|     internal::pstore(data2 + 0 * PacketSize, A0);
 | |
|     internal::pstore(data2 + 1 * PacketSize, A1);
 | |
|     internal::pstore(data2 + 2 * PacketSize, A2);
 | |
|     internal::pstore(data2 + 3 * PacketSize, A3);
 | |
|     VERIFY(test::areApprox(ref, data2, 4 * PacketSize) && "internal::pbroadcast4");
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize];
 | |
|     Packet A0, A1;
 | |
|     internal::pbroadcast2<Packet>(data1, A0, A1);
 | |
|     internal::pstore(data2 + 0 * PacketSize, A0);
 | |
|     internal::pstore(data2 + 1 * PacketSize, A1);
 | |
|     VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && "internal::pbroadcast2");
 | |
|   }
 | |
| 
 | |
|   VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
 | |
| 
 | |
|   if (PacketSize > 1) {
 | |
|     // apply different offsets to check that ploaddup is robust to unaligned inputs
 | |
|     for (int offset = 0; offset < 4; ++offset) {
 | |
|       for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i];
 | |
|       internal::pstore(data2, internal::ploaddup<Packet>(data1 + offset));
 | |
|       VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PacketSize > 2) {
 | |
|     // apply different offsets to check that ploadquad is robust to unaligned inputs
 | |
|     for (int offset = 0; offset < 4; ++offset) {
 | |
|       for (int i = 0; i < PacketSize / 4; ++i)
 | |
|         ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i];
 | |
|       internal::pstore(data2, internal::ploadquad<Packet>(data1 + offset));
 | |
|       VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ref[0] = Scalar(0);
 | |
|   for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i];
 | |
|   VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
 | |
| 
 | |
|   if (!internal::is_same<Packet, typename internal::unpacket_traits<Packet>::half>::value) {
 | |
|     int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize;
 | |
|     for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0);
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i];
 | |
|     internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1)));
 | |
|     VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
 | |
|   }
 | |
| 
 | |
|   ref[0] = Scalar(1);
 | |
|   for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]);
 | |
|   VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
 | |
| 
 | |
|   for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1];
 | |
|   internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
 | |
|   VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse");
 | |
| 
 | |
|   internal::PacketBlock<Packet> kernel;
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     kernel.packet[i] = internal::pload<Packet>(data1 + i * PacketSize);
 | |
|   }
 | |
|   ptranspose(kernel);
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     internal::pstore(data2, kernel.packet[i]);
 | |
|     for (int j = 0; j < PacketSize; ++j) {
 | |
|       VERIFY(test::isApproxAbs(data2[j], data1[i + j * PacketSize], refvalue) && "ptranspose");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // GeneralBlockPanelKernel also checks PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize>;
 | |
|   if (PacketSize > 4 && PacketSize % 4 == 0) {
 | |
|     internal::PacketBlock<Packet, PacketSize % 4 == 0 ? 4 : PacketSize> kernel2;
 | |
|     for (int i = 0; i < 4; ++i) {
 | |
|       kernel2.packet[i] = internal::pload<Packet>(data1 + i * PacketSize);
 | |
|     }
 | |
|     ptranspose(kernel2);
 | |
|     int data_counter = 0;
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       for (int j = 0; j < 4; ++j) {
 | |
|         data2[data_counter++] = data1[j * PacketSize + i];
 | |
|       }
 | |
|     }
 | |
|     for (int i = 0; i < 4; ++i) {
 | |
|       internal::pstore(data3, kernel2.packet[i]);
 | |
|       for (int j = 0; j < PacketSize; ++j) {
 | |
|         VERIFY(test::isApproxAbs(data3[j], data2[i * PacketSize + j], refvalue) && "ptranspose");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PacketTraits::HasBlend) {
 | |
|     Packet thenPacket = internal::pload<Packet>(data1);
 | |
|     Packet elsePacket = internal::pload<Packet>(data2);
 | |
|     EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector;
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       selector.select[i] = i;
 | |
|     }
 | |
| 
 | |
|     Packet blend = internal::pblend(selector, thenPacket, elsePacket);
 | |
|     EIGEN_ALIGN_MAX Scalar result[size];
 | |
|     internal::pstore(result, blend);
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       // "if" mask
 | |
|       unsigned char v = internal::random<bool>() ? 0xff : 0;
 | |
|       char* bytes = (char*)(data1 + i);
 | |
|       for (int k = 0; k < int(sizeof(Scalar)); ++k) {
 | |
|         bytes[k] = v;
 | |
|       }
 | |
|       // "then" packet
 | |
|       data1[i + PacketSize] = internal::random<Scalar>();
 | |
|       // "else" packet
 | |
|       data1[i + 2 * PacketSize] = internal::random<Scalar>();
 | |
|     }
 | |
|     CHECK_CWISE3_IF(true, internal::pselect, internal::pselect);
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = internal::random<Scalar>();
 | |
|   }
 | |
|   CHECK_CWISE1(internal::pzero, internal::pzero);
 | |
|   CHECK_CWISE2_IF(true, internal::por, internal::por);
 | |
|   CHECK_CWISE2_IF(true, internal::pxor, internal::pxor);
 | |
|   CHECK_CWISE2_IF(true, internal::pand, internal::pand);
 | |
| 
 | |
|   packetmath_boolean_mask_ops<Scalar, Packet>();
 | |
|   packetmath_pcast_ops_runner<Scalar, Packet>::run();
 | |
|   packetmath_minus_zero_add_test<Scalar, Packet>::run();
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = numext::abs(internal::random<Scalar>());
 | |
|   }
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt);
 | |
|   CHECK_CWISE3_IF(true, REF_MADD, internal::pmadd);
 | |
|   if (!std::is_same<Scalar, bool>::value && NumTraits<Scalar>::IsSigned) {
 | |
|     CHECK_CWISE3_IF(PacketTraits::HasNegate, REF_NMSUB, internal::pnmsub);
 | |
|   }
 | |
| 
 | |
|   // For pmsub, pnmadd, the values can cancel each other to become near zero,
 | |
|   // which can lead to very flaky tests. Here we ensure the signs are such that
 | |
|   // they do not cancel.
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = numext::abs(internal::random<Scalar>());
 | |
|     data1[i + PacketSize] = numext::abs(internal::random<Scalar>());
 | |
|     data1[i + 2 * PacketSize] = -numext::abs(internal::random<Scalar>());
 | |
|   }
 | |
|   if (!std::is_same<Scalar, bool>::value && NumTraits<Scalar>::IsSigned) {
 | |
|     CHECK_CWISE3_IF(true, REF_MSUB, internal::pmsub);
 | |
|     CHECK_CWISE3_IF(PacketTraits::HasNegate, REF_NMADD, internal::pnmadd);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Notice that this definition works for complex types as well.
 | |
| // c++11 has std::log2 for real, but not for complex types.
 | |
| template <typename Scalar>
 | |
| Scalar log2(Scalar x) {
 | |
|   return Scalar(EIGEN_LOG2E) * std::log(x);
 | |
| }
 | |
| 
 | |
| // Create a functor out of a function so it can be passed (with overloads)
 | |
| // to another function as an input argument.
 | |
| #define CREATE_FUNCTOR(Name, Func)     \
 | |
|   struct Name {                        \
 | |
|     template <typename T>              \
 | |
|     T operator()(const T& val) const { \
 | |
|       return Func(val);                \
 | |
|     }                                  \
 | |
|   }
 | |
| 
 | |
| CREATE_FUNCTOR(psqrt_functor, internal::psqrt);
 | |
| CREATE_FUNCTOR(prsqrt_functor, internal::prsqrt);
 | |
| 
 | |
| // TODO(rmlarsen): Run this test for more functions.
 | |
| template <bool Cond, typename Scalar, typename Packet, typename RefFunctorT, typename FunctorT>
 | |
| void packetmath_test_IEEE_corner_cases(const RefFunctorT& ref_fun, const FunctorT& fun) {
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|   const Scalar norm_min = (std::numeric_limits<Scalar>::min)();
 | |
|   const Scalar norm_max = (std::numeric_limits<Scalar>::max)();
 | |
| 
 | |
|   constexpr int size = PacketSize * 2;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[size];
 | |
|   EIGEN_ALIGN_MAX Scalar data2[size];
 | |
|   EIGEN_ALIGN_MAX Scalar ref[size];
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = data2[i] = ref[i] = Scalar(0);
 | |
|   }
 | |
| 
 | |
|   // Test for subnormals.
 | |
|   if (Cond && std::numeric_limits<Scalar>::has_denorm == std::denorm_present && !EIGEN_ARCH_ARM) {
 | |
|     for (int scale = 1; scale < 5; ++scale) {
 | |
|       // When EIGEN_FAST_MATH is 1 we relax the conditions slightly, and allow the function
 | |
|       // to return the same value for subnormals as the reference would return for zero with
 | |
|       // the same sign as the input.
 | |
| #if EIGEN_FAST_MATH
 | |
|       data1[0] = Scalar(scale) * std::numeric_limits<Scalar>::denorm_min();
 | |
|       data1[1] = -data1[0];
 | |
|       test::packet_helper<Cond, Packet> h;
 | |
|       h.store(data2, fun(h.load(data1)));
 | |
|       for (int i = 0; i < PacketSize; ++i) {
 | |
|         const Scalar ref_zero = ref_fun(data1[i] < 0 ? -Scalar(0) : Scalar(0));
 | |
|         const Scalar ref_val = ref_fun(data1[i]);
 | |
|         VERIFY(((std::isnan)(data2[i]) && (std::isnan)(ref_val)) || data2[i] == ref_zero ||
 | |
|                verifyIsApprox(data2[i], ref_val));
 | |
|       }
 | |
| #else
 | |
|       CHECK_CWISE1_IF(Cond, ref_fun, fun);
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Test for smallest normalized floats.
 | |
|   data1[0] = norm_min;
 | |
|   data1[1] = -data1[0];
 | |
|   CHECK_CWISE1_IF(Cond, ref_fun, fun);
 | |
| 
 | |
|   // Test for largest floats.
 | |
|   data1[0] = norm_max;
 | |
|   data1[1] = -data1[0];
 | |
|   CHECK_CWISE1_IF(Cond, ref_fun, fun);
 | |
| 
 | |
|   // Test for zeros.
 | |
|   data1[0] = Scalar(0.0);
 | |
|   data1[1] = -data1[0];
 | |
|   CHECK_CWISE1_IF(Cond, ref_fun, fun);
 | |
| 
 | |
|   // Test for infinities.
 | |
|   data1[0] = NumTraits<Scalar>::infinity();
 | |
|   data1[1] = -data1[0];
 | |
|   CHECK_CWISE1_IF(Cond, ref_fun, fun);
 | |
| 
 | |
|   // Test for quiet NaNs.
 | |
|   data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
 | |
|   data1[1] = -std::numeric_limits<Scalar>::quiet_NaN();
 | |
|   CHECK_CWISE1_IF(Cond, ref_fun, fun);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath_real() {
 | |
|   typedef internal::packet_traits<Scalar> PacketTraits;
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
| 
 | |
|   const int size = PacketSize * 4;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4] = {};
 | |
|   EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4] = {};
 | |
|   EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4] = {};
 | |
| 
 | |
|   // Negate with -0.
 | |
|   if (PacketTraits::HasNegate) {
 | |
|     test::packet_helper<PacketTraits::HasNegate, Packet> h;
 | |
|     data1[0] = Scalar{-0};
 | |
|     h.store(data2, internal::pnegate(h.load(data1)));
 | |
|     typedef typename internal::make_unsigned<typename internal::make_integer<Scalar>::type>::type Bits;
 | |
|     Bits bits = numext::bit_cast<Bits>(data2[0]);
 | |
|     VERIFY_IS_EQUAL(bits, static_cast<Bits>(Bits(1) << (sizeof(Scalar) * CHAR_BIT - 1)));
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6)));
 | |
|     data2[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6)));
 | |
|   }
 | |
| 
 | |
|   if (internal::random<float>(0, 1) < 0.1f) data1[internal::random<int>(0, PacketSize)] = Scalar(0);
 | |
| 
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasLog, log2, internal::plog2);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt);
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3)));
 | |
|     data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3)));
 | |
|   }
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
 | |
| 
 | |
|   CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
 | |
|   CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
 | |
|   CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
 | |
|   CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign);
 | |
| 
 | |
|   packetmath_boolean_mask_ops_real<Scalar, Packet>();
 | |
| 
 | |
|   // Rounding edge cases.
 | |
|   if (PacketTraits::HasRound || PacketTraits::HasCeil || PacketTraits::HasFloor || PacketTraits::HasRint) {
 | |
|     typedef typename internal::make_integer<Scalar>::type IntType;
 | |
|     // Start with values that cannot fit inside an integer, work down to less than one.
 | |
|     Scalar val =
 | |
|         numext::mini(Scalar(2) * static_cast<Scalar>(NumTraits<IntType>::highest()), NumTraits<Scalar>::highest());
 | |
|     std::vector<Scalar> values;
 | |
|     while (val > Scalar(0.25)) {
 | |
|       // Cover both even and odd, positive and negative cases.
 | |
|       values.push_back(val);
 | |
|       values.push_back(val + Scalar(0.3));
 | |
|       values.push_back(val + Scalar(0.5));
 | |
|       values.push_back(val + Scalar(0.8));
 | |
|       values.push_back(val + Scalar(1));
 | |
|       values.push_back(val + Scalar(1.3));
 | |
|       values.push_back(val + Scalar(1.5));
 | |
|       values.push_back(val + Scalar(1.8));
 | |
|       values.push_back(-val);
 | |
|       values.push_back(-val - Scalar(0.3));
 | |
|       values.push_back(-val - Scalar(0.5));
 | |
|       values.push_back(-val - Scalar(0.8));
 | |
|       values.push_back(-val - Scalar(1));
 | |
|       values.push_back(-val - Scalar(1.3));
 | |
|       values.push_back(-val - Scalar(1.5));
 | |
|       values.push_back(-val - Scalar(1.8));
 | |
|       values.push_back(Scalar(-1.5) + val);  // Bug 1785.
 | |
|       val = val / Scalar(2);
 | |
|     }
 | |
|     values.push_back(NumTraits<Scalar>::infinity());
 | |
|     values.push_back(-NumTraits<Scalar>::infinity());
 | |
|     values.push_back(NumTraits<Scalar>::quiet_NaN());
 | |
| 
 | |
|     for (size_t k = 0; k < values.size(); ++k) {
 | |
|       data1[0] = values[k];
 | |
|       CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
 | |
|       CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
 | |
|       CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
 | |
|       CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = Scalar(internal::random<double>(-1, 1));
 | |
|     data2[i] = Scalar(internal::random<double>(-1, 1));
 | |
|   }
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasATan, std::atan, internal::patan);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasATanh, std::atanh, internal::patanh);
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = Scalar(internal::random<double>(-87, 88));
 | |
|     data2[i] = Scalar(internal::random<double>(-87, 88));
 | |
|     data1[0] = -NumTraits<Scalar>::infinity();
 | |
|   }
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp);
 | |
| 
 | |
|   CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
 | |
|   if (PacketTraits::HasExp) {
 | |
| // Check denormals:
 | |
| #if !EIGEN_ARCH_ARM
 | |
|     for (int j = 0; j < 3; ++j) {
 | |
|       data1[0] = Scalar(std::ldexp(1, NumTraits<Scalar>::min_exponent() - j));
 | |
|       CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
 | |
|       data1[0] = -data1[0];
 | |
|       CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // zero
 | |
|     data1[0] = Scalar(0);
 | |
|     CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
 | |
| 
 | |
|     // inf and NaN only compare output fraction, not exponent.
 | |
|     test::packet_helper<PacketTraits::HasExp, Packet> h;
 | |
|     Packet pout;
 | |
|     Scalar sout;
 | |
|     Scalar special[] = {NumTraits<Scalar>::infinity(), -NumTraits<Scalar>::infinity(), NumTraits<Scalar>::quiet_NaN()};
 | |
|     for (int i = 0; i < 3; ++i) {
 | |
|       data1[0] = special[i];
 | |
|       ref[0] = Scalar(REF_FREXP(data1[0], ref[PacketSize]));
 | |
|       h.store(data2, internal::pfrexp(h.load(data1), h.forward_reference(pout, sout)));
 | |
|       VERIFY(test::areApprox(ref, data2, 1) && "internal::pfrexp");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = Scalar(internal::random<double>(-1, 1));
 | |
|     data2[i] = Scalar(internal::random<double>(-1, 1));
 | |
|   }
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i + PacketSize] = Scalar(internal::random<int>(-4, 4));
 | |
|     data2[i + PacketSize] = Scalar(internal::random<double>(-4, 4));
 | |
|   }
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|   if (PacketTraits::HasExp) {
 | |
|     data1[0] = Scalar(-1);
 | |
|     // underflow to zero
 | |
|     data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent() - 55);
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|     // overflow to inf
 | |
|     data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent() + 10);
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|     // NaN stays NaN
 | |
|     data1[0] = NumTraits<Scalar>::quiet_NaN();
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|     VERIFY((numext::isnan)(data2[0]));
 | |
|     // inf stays inf
 | |
|     data1[0] = NumTraits<Scalar>::infinity();
 | |
|     data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent() - 10);
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|     // zero stays zero
 | |
|     data1[0] = Scalar(0);
 | |
|     data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent() + 10);
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|     // Small number big exponent.
 | |
|     data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::min_exponent() - 1));
 | |
|     data1[PacketSize] = Scalar(-NumTraits<Scalar>::min_exponent() + NumTraits<Scalar>::max_exponent());
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|     // Big number small exponent.
 | |
|     data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::max_exponent() - 1));
 | |
|     data1[PacketSize] = Scalar(+NumTraits<Scalar>::min_exponent() - NumTraits<Scalar>::max_exponent());
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6)));
 | |
|     data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6)));
 | |
|   }
 | |
|   data1[0] = Scalar(1e-20);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
 | |
|   if (PacketTraits::HasExp && PacketSize >= 2) {
 | |
|     const Scalar small = NumTraits<Scalar>::epsilon();
 | |
|     data1[0] = NumTraits<Scalar>::quiet_NaN();
 | |
|     data1[1] = small;
 | |
|     test::packet_helper<PacketTraits::HasExp, Packet> h;
 | |
|     h.store(data2, internal::pexp(h.load(data1)));
 | |
|     VERIFY((numext::isnan)(data2[0]));
 | |
|     // TODO(rmlarsen): Re-enable for bfloat16.
 | |
|     if (!internal::is_same<Scalar, bfloat16>::value) {
 | |
|       VERIFY_IS_APPROX(std::exp(small), data2[1]);
 | |
|     }
 | |
| 
 | |
|     data1[0] = -small;
 | |
|     data1[1] = Scalar(0);
 | |
|     h.store(data2, internal::pexp(h.load(data1)));
 | |
|     // TODO(rmlarsen): Re-enable for bfloat16.
 | |
|     if (!internal::is_same<Scalar, bfloat16>::value) {
 | |
|       VERIFY_IS_APPROX(std::exp(-small), data2[0]);
 | |
|     }
 | |
|     VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]);
 | |
| 
 | |
|     data1[0] = (std::numeric_limits<Scalar>::min)();
 | |
|     data1[1] = -(std::numeric_limits<Scalar>::min)();
 | |
|     h.store(data2, internal::pexp(h.load(data1)));
 | |
|     VERIFY_IS_APPROX(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]);
 | |
|     VERIFY_IS_APPROX(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]);
 | |
| 
 | |
|     data1[0] = std::numeric_limits<Scalar>::denorm_min();
 | |
|     data1[1] = -std::numeric_limits<Scalar>::denorm_min();
 | |
|     h.store(data2, internal::pexp(h.load(data1)));
 | |
|     VERIFY_IS_APPROX(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
 | |
|     VERIFY_IS_APPROX(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]);
 | |
|   }
 | |
| 
 | |
|   if (PacketTraits::HasTanh) {
 | |
|     // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details.
 | |
|     data1[0] = NumTraits<Scalar>::quiet_NaN();
 | |
|     test::packet_helper<internal::packet_traits<Scalar>::HasTanh, Packet> h;
 | |
|     h.store(data2, internal::ptanh(h.load(data1)));
 | |
|     VERIFY((numext::isnan)(data2[0]));
 | |
|   }
 | |
| 
 | |
|   if (PacketTraits::HasExp) {
 | |
|     internal::scalar_logistic_op<Scalar> logistic;
 | |
|     for (int i = 0; i < size; ++i) {
 | |
|       data1[i] = Scalar(internal::random<double>(-20, 20));
 | |
|     }
 | |
| 
 | |
|     test::packet_helper<PacketTraits::HasExp, Packet> h;
 | |
|     h.store(data2, logistic.packetOp(h.load(data1)));
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       VERIFY_IS_APPROX(data2[i], logistic(data1[i]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if EIGEN_HAS_C99_MATH
 | |
|   data1[0] = NumTraits<Scalar>::infinity();
 | |
|   data1[1] = Scalar(-1);
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p);
 | |
|   data1[0] = NumTraits<Scalar>::infinity();
 | |
|   data1[1] = -NumTraits<Scalar>::infinity();
 | |
|   CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1);
 | |
| #endif
 | |
| 
 | |
|   if (PacketSize >= 2) {
 | |
|     data1[0] = NumTraits<Scalar>::quiet_NaN();
 | |
|     data1[1] = NumTraits<Scalar>::epsilon();
 | |
|     if (PacketTraits::HasLog) {
 | |
|       test::packet_helper<PacketTraits::HasLog, Packet> h;
 | |
|       h.store(data2, internal::plog(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
|       // TODO(cantonios): Re-enable for bfloat16.
 | |
|       if (!internal::is_same<Scalar, bfloat16>::value) {
 | |
|         VERIFY_IS_APPROX(std::log(data1[1]), data2[1]);
 | |
|       }
 | |
| 
 | |
|       data1[0] = -NumTraits<Scalar>::epsilon();
 | |
|       data1[1] = Scalar(0);
 | |
|       h.store(data2, internal::plog(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
|       VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]);
 | |
| 
 | |
|       data1[0] = (std::numeric_limits<Scalar>::min)();
 | |
|       data1[1] = -(std::numeric_limits<Scalar>::min)();
 | |
|       h.store(data2, internal::plog(h.load(data1)));
 | |
|       // TODO(cantonios): Re-enable for bfloat16.
 | |
|       if (!internal::is_same<Scalar, bfloat16>::value) {
 | |
|         VERIFY_IS_APPROX(std::log((std::numeric_limits<Scalar>::min)()), data2[0]);
 | |
|       }
 | |
|       VERIFY((numext::isnan)(data2[1]));
 | |
| 
 | |
|       // Note: 32-bit arm always flushes denorms to zero.
 | |
| #if !EIGEN_ARCH_ARM
 | |
|       if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) {
 | |
|         data1[0] = std::numeric_limits<Scalar>::denorm_min();
 | |
|         data1[1] = -std::numeric_limits<Scalar>::denorm_min();
 | |
|         h.store(data2, internal::plog(h.load(data1)));
 | |
|         // TODO(rmlarsen): Re-enable for bfloat16.
 | |
|         if (!internal::is_same<Scalar, bfloat16>::value) {
 | |
|           VERIFY_IS_APPROX(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
 | |
|         }
 | |
|         VERIFY((numext::isnan)(data2[1]));
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       data1[0] = Scalar(-1.0f);
 | |
|       h.store(data2, internal::plog(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
| 
 | |
|       data1[0] = NumTraits<Scalar>::infinity();
 | |
|       h.store(data2, internal::plog(h.load(data1)));
 | |
|       VERIFY((numext::isinf)(data2[0]));
 | |
|     }
 | |
|     if (PacketTraits::HasLog1p) {
 | |
|       test::packet_helper<PacketTraits::HasLog1p, Packet> h;
 | |
|       data1[0] = Scalar(-2);
 | |
|       data1[1] = -NumTraits<Scalar>::infinity();
 | |
|       h.store(data2, internal::plog1p(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
|       VERIFY((numext::isnan)(data2[1]));
 | |
|     }
 | |
| 
 | |
|     packetmath_test_IEEE_corner_cases<PacketTraits::HasSqrt, Scalar, Packet>(numext::sqrt<Scalar>, psqrt_functor());
 | |
|     packetmath_test_IEEE_corner_cases<PacketTraits::HasRsqrt, Scalar, Packet>(numext::rsqrt<Scalar>, prsqrt_functor());
 | |
| 
 | |
|     // TODO(rmlarsen): Re-enable for half and bfloat16.
 | |
|     if (PacketTraits::HasCos && !internal::is_same<Scalar, half>::value &&
 | |
|         !internal::is_same<Scalar, bfloat16>::value) {
 | |
|       test::packet_helper<PacketTraits::HasCos, Packet> h;
 | |
|       for (Scalar k = Scalar(1); k < Scalar(10000) / NumTraits<Scalar>::epsilon(); k *= Scalar(2)) {
 | |
|         for (int k1 = 0; k1 <= 1; ++k1) {
 | |
|           data1[0] = Scalar((2 * double(k) + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2));
 | |
|           data1[1] = Scalar((2 * double(k) + 2 + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2));
 | |
|           h.store(data2, internal::pcos(h.load(data1)));
 | |
|           h.store(data2 + PacketSize, internal::psin(h.load(data1)));
 | |
|           VERIFY(data2[0] <= Scalar(1.) && data2[0] >= Scalar(-1.));
 | |
|           VERIFY(data2[1] <= Scalar(1.) && data2[1] >= Scalar(-1.));
 | |
|           VERIFY(data2[PacketSize + 0] <= Scalar(1.) && data2[PacketSize + 0] >= Scalar(-1.));
 | |
|           VERIFY(data2[PacketSize + 1] <= Scalar(1.) && data2[PacketSize + 1] >= Scalar(-1.));
 | |
| 
 | |
|           VERIFY_IS_APPROX(data2[0], std::cos(data1[0]));
 | |
|           VERIFY_IS_APPROX(data2[1], std::cos(data1[1]));
 | |
|           VERIFY_IS_APPROX(data2[PacketSize + 0], std::sin(data1[0]));
 | |
|           VERIFY_IS_APPROX(data2[PacketSize + 1], std::sin(data1[1]));
 | |
| 
 | |
|           VERIFY_IS_APPROX(numext::abs2(data2[0]) + numext::abs2(data2[PacketSize + 0]), Scalar(1));
 | |
|           VERIFY_IS_APPROX(numext::abs2(data2[1]) + numext::abs2(data2[PacketSize + 1]), Scalar(1));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       data1[0] = NumTraits<Scalar>::infinity();
 | |
|       data1[1] = -NumTraits<Scalar>::infinity();
 | |
|       h.store(data2, internal::psin(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
|       VERIFY((numext::isnan)(data2[1]));
 | |
| 
 | |
|       h.store(data2, internal::pcos(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
|       VERIFY((numext::isnan)(data2[1]));
 | |
| 
 | |
|       data1[0] = NumTraits<Scalar>::quiet_NaN();
 | |
|       h.store(data2, internal::psin(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
|       h.store(data2, internal::pcos(h.load(data1)));
 | |
|       VERIFY((numext::isnan)(data2[0]));
 | |
| 
 | |
|       data1[0] = -Scalar(0.);
 | |
|       h.store(data2, internal::psin(h.load(data1)));
 | |
|       VERIFY(internal::biteq(data2[0], data1[0]));
 | |
|       h.store(data2, internal::pcos(h.load(data1)));
 | |
|       VERIFY_IS_EQUAL(data2[0], Scalar(1));
 | |
|     }
 | |
|   }
 | |
|   if (PacketTraits::HasReciprocal && PacketSize >= 2) {
 | |
|     test::packet_helper<PacketTraits::HasReciprocal, Packet> h;
 | |
|     const Scalar inf = NumTraits<Scalar>::infinity();
 | |
|     const Scalar zero = Scalar(0);
 | |
|     data1[0] = zero;
 | |
|     data1[1] = -zero;
 | |
|     h.store(data2, internal::preciprocal(h.load(data1)));
 | |
|     VERIFY_IS_EQUAL(data2[0], inf);
 | |
|     VERIFY_IS_EQUAL(data2[1], -inf);
 | |
| 
 | |
|     data1[0] = inf;
 | |
|     data1[1] = -inf;
 | |
|     h.store(data2, internal::preciprocal(h.load(data1)));
 | |
|     VERIFY_IS_EQUAL(data2[0], zero);
 | |
|     VERIFY_IS_EQUAL(data2[1], -zero);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define CAST_CHECK_CWISE1_IF(COND, REFOP, POP, SCALAR, REFTYPE)                                  \
 | |
|   if (COND) {                                                                                    \
 | |
|     test::packet_helper<COND, Packet> h;                                                         \
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[i] = SCALAR(REFOP(static_cast<REFTYPE>(data1[i]))); \
 | |
|     h.store(data2, POP(h.load(data1)));                                                          \
 | |
|     VERIFY(test::areApprox(ref, data2, PacketSize) && #POP);                                     \
 | |
|   }
 | |
| 
 | |
| template <typename Scalar>
 | |
| Scalar propagate_nan_max(const Scalar& a, const Scalar& b) {
 | |
|   if ((numext::isnan)(a)) return a;
 | |
|   if ((numext::isnan)(b)) return b;
 | |
|   return (numext::maxi)(a, b);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| Scalar propagate_nan_min(const Scalar& a, const Scalar& b) {
 | |
|   if ((numext::isnan)(a)) return a;
 | |
|   if ((numext::isnan)(b)) return b;
 | |
|   return (numext::mini)(a, b);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| Scalar propagate_number_max(const Scalar& a, const Scalar& b) {
 | |
|   if ((numext::isnan)(a)) return b;
 | |
|   if ((numext::isnan)(b)) return a;
 | |
|   return (numext::maxi)(a, b);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| Scalar propagate_number_min(const Scalar& a, const Scalar& b) {
 | |
|   if ((numext::isnan)(a)) return b;
 | |
|   if ((numext::isnan)(b)) return a;
 | |
|   return (numext::mini)(a, b);
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath_notcomplex() {
 | |
|   typedef internal::packet_traits<Scalar> PacketTraits;
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
| 
 | |
|   EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
 | |
|   EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
 | |
|   EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
 | |
| 
 | |
|   Array<Scalar, Dynamic, 1>::Map(data1, PacketSize * 4).setRandom();
 | |
| 
 | |
|   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin);
 | |
|   VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax);
 | |
| 
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin);
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax);
 | |
| 
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, internal::pmin<PropagateNumbers>);
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>);
 | |
|   CHECK_CWISE1(numext::abs, internal::pabs);
 | |
|   CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff);
 | |
| 
 | |
|   ref[0] = data1[0];
 | |
|   for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]);
 | |
|   VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
 | |
|   ref[0] = data1[0];
 | |
|   for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]);
 | |
|   VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
 | |
| 
 | |
|   for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i);
 | |
|   internal::pstore(data2, internal::plset<Packet>(data1[0]));
 | |
|   VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset");
 | |
| 
 | |
|   {
 | |
|     unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1);
 | |
|     // predux_all - not needed yet
 | |
|     // for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff;
 | |
|     // VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)");
 | |
|     // for(int k=0; k<PacketSize; ++k)
 | |
|     // {
 | |
|     //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0;
 | |
|     //   VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)");
 | |
|     //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff;
 | |
|     // }
 | |
| 
 | |
|     // predux_any
 | |
|     for (unsigned int i = 0; i < PacketSize * sizeof(Scalar); ++i) data1_bits[i] = 0x0;
 | |
|     VERIFY((!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)");
 | |
|     for (int k = 0; k < PacketSize; ++k) {
 | |
|       for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff;
 | |
|       VERIFY(internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)");
 | |
|       for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Test NaN propagation.
 | |
|   if (!NumTraits<Scalar>::IsInteger) {
 | |
|     // Test reductions with no NaNs.
 | |
|     ref[0] = data1[0];
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNumbers>(ref[0], data1[i]);
 | |
|     VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))) &&
 | |
|            "internal::predux_min<PropagateNumbers>");
 | |
|     ref[0] = data1[0];
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNaN>(ref[0], data1[i]);
 | |
|     VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))) &&
 | |
|            "internal::predux_min<PropagateNaN>");
 | |
|     ref[0] = data1[0];
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNumbers>(ref[0], data1[i]);
 | |
|     VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))) &&
 | |
|            "internal::predux_max<PropagateNumbers>");
 | |
|     ref[0] = data1[0];
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNaN>(ref[0], data1[i]);
 | |
|     VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))) &&
 | |
|            "internal::predux_max<PropagateNumbers>");
 | |
|     // A single NaN.
 | |
|     const size_t index = std::numeric_limits<size_t>::quiet_NaN() % PacketSize;
 | |
|     data1[index] = NumTraits<Scalar>::quiet_NaN();
 | |
|     VERIFY(PacketSize == 1 || !(numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))));
 | |
|     VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))));
 | |
|     VERIFY(PacketSize == 1 || !(numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))));
 | |
|     VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))));
 | |
|     // All NaNs.
 | |
|     for (int i = 0; i < 4 * PacketSize; ++i) data1[i] = NumTraits<Scalar>::quiet_NaN();
 | |
|     VERIFY((numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))));
 | |
|     VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))));
 | |
|     VERIFY((numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))));
 | |
|     VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))));
 | |
| 
 | |
|     // Test NaN propagation for coefficient-wise min and max.
 | |
|     for (int i = 0; i < PacketSize; ++i) {
 | |
|       data1[i] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0);
 | |
|       data1[i + PacketSize] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0);
 | |
|     }
 | |
|     // Note: NaN propagation is implementation defined for pmin/pmax, so we do not test it here.
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, (internal::pmin<PropagateNumbers>));
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>);
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_nan_min, (internal::pmin<PropagateNaN>));
 | |
|     CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_nan_max, internal::pmax<PropagateNaN>);
 | |
|   }
 | |
| 
 | |
|   packetmath_boolean_mask_ops_notcomplex_test<Scalar, Packet>::run();
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet, bool ConjLhs, bool ConjRhs>
 | |
| void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) {
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
| 
 | |
|   internal::conj_if<ConjLhs> cj0;
 | |
|   internal::conj_if<ConjRhs> cj1;
 | |
|   internal::conj_helper<Scalar, Scalar, ConjLhs, ConjRhs> cj;
 | |
|   internal::conj_helper<Packet, Packet, ConjLhs, ConjRhs> pcj;
 | |
| 
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     ref[i] = cj0(data1[i]) * cj1(data2[i]);
 | |
|     VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul");
 | |
|   }
 | |
|   internal::pstore(pval, pcj.pmul(internal::pload<Packet>(data1), internal::pload<Packet>(data2)));
 | |
|   VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul");
 | |
| 
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     Scalar tmp = ref[i];
 | |
|     ref[i] += cj0(data1[i]) * cj1(data2[i]);
 | |
|     VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd");
 | |
|   }
 | |
|   internal::pstore(
 | |
|       pval, pcj.pmadd(internal::pload<Packet>(data1), internal::pload<Packet>(data2), internal::pload<Packet>(pval)));
 | |
|   VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath_complex() {
 | |
|   typedef internal::packet_traits<Scalar> PacketTraits;
 | |
|   typedef typename Scalar::value_type RealScalar;
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
| 
 | |
|   const int size = PacketSize * 4;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
 | |
|   EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
 | |
|   EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
 | |
|   EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4];
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     data1[i] = internal::random<Scalar>() * Scalar(1e2);
 | |
|     data2[i] = internal::random<Scalar>() * Scalar(1e2);
 | |
|   }
 | |
| 
 | |
|   test_conj_helper<Scalar, Packet, false, false>(data1, data2, ref, pval);
 | |
|   test_conj_helper<Scalar, Packet, false, true>(data1, data2, ref, pval);
 | |
|   test_conj_helper<Scalar, Packet, true, false>(data1, data2, ref, pval);
 | |
|   test_conj_helper<Scalar, Packet, true, true>(data1, data2, ref, pval);
 | |
| 
 | |
|   // Test pcplxflip.
 | |
|   {
 | |
|     for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i]));
 | |
|     internal::pstore(pval, internal::pcplxflip(internal::pload<Packet>(data1)));
 | |
|     VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip");
 | |
|   }
 | |
| 
 | |
|   if (PacketTraits::HasSqrt) {
 | |
|     for (int i = 0; i < size; ++i) {
 | |
|       data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>());
 | |
|     }
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, size);
 | |
|     CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign);
 | |
| 
 | |
|     // Test misc. corner cases.
 | |
|     const RealScalar zero = RealScalar(0);
 | |
|     const RealScalar one = RealScalar(1);
 | |
|     const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
 | |
|     const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN();
 | |
|     data1[0] = Scalar(zero, zero);
 | |
|     data1[1] = Scalar(-zero, zero);
 | |
|     data1[2] = Scalar(one, zero);
 | |
|     data1[3] = Scalar(zero, one);
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
 | |
|     data1[0] = Scalar(-one, zero);
 | |
|     data1[1] = Scalar(zero, -one);
 | |
|     data1[2] = Scalar(one, one);
 | |
|     data1[3] = Scalar(-one, -one);
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
 | |
|     data1[0] = Scalar(inf, zero);
 | |
|     data1[1] = Scalar(zero, inf);
 | |
|     data1[2] = Scalar(-inf, zero);
 | |
|     data1[3] = Scalar(zero, -inf);
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
 | |
|     data1[0] = Scalar(inf, inf);
 | |
|     data1[1] = Scalar(-inf, inf);
 | |
|     data1[2] = Scalar(inf, -inf);
 | |
|     data1[3] = Scalar(-inf, -inf);
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
 | |
|     data1[0] = Scalar(nan, zero);
 | |
|     data1[1] = Scalar(zero, nan);
 | |
|     data1[2] = Scalar(nan, one);
 | |
|     data1[3] = Scalar(one, nan);
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
 | |
|     data1[0] = Scalar(nan, nan);
 | |
|     data1[1] = Scalar(inf, nan);
 | |
|     data1[2] = Scalar(nan, inf);
 | |
|     data1[3] = Scalar(-inf, nan);
 | |
|     CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar, typename Packet>
 | |
| void packetmath_scatter_gather() {
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   const int PacketSize = internal::unpacket_traits<Packet>::size;
 | |
|   EIGEN_ALIGN_MAX Scalar data1[PacketSize];
 | |
|   RealScalar refvalue = RealScalar(0);
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|   }
 | |
| 
 | |
|   int stride = internal::random<int>(1, 20);
 | |
| 
 | |
|   // Buffer of zeros.
 | |
|   EIGEN_ALIGN_MAX Scalar buffer[PacketSize * 20] = {};
 | |
| 
 | |
|   Packet packet = internal::pload<Packet>(data1);
 | |
|   internal::pscatter<Scalar, Packet>(buffer, packet, stride);
 | |
| 
 | |
|   for (int i = 0; i < PacketSize * 20; ++i) {
 | |
|     if ((i % stride) == 0 && i < stride * PacketSize) {
 | |
|       VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter");
 | |
|     } else {
 | |
|       VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < PacketSize * 7; ++i) {
 | |
|     buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|   }
 | |
|   packet = internal::pgather<Scalar, Packet>(buffer, 7);
 | |
|   internal::pstore(data1, packet);
 | |
|   for (int i = 0; i < PacketSize; ++i) {
 | |
|     VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather");
 | |
|   }
 | |
| 
 | |
|   for (Index N = 0; N <= PacketSize; ++N) {
 | |
|     for (Index i = 0; i < N; ++i) {
 | |
|       data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|     }
 | |
| 
 | |
|     for (Index i = 0; i < N * 20; ++i) {
 | |
|       buffer[i] = Scalar(0);
 | |
|     }
 | |
| 
 | |
|     packet = internal::pload_partial<Packet>(data1, N);
 | |
|     internal::pscatter_partial<Scalar, Packet>(buffer, packet, stride, N);
 | |
| 
 | |
|     for (Index i = 0; i < N * 20; ++i) {
 | |
|       if ((i % stride) == 0 && i < stride * N) {
 | |
|         VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter_partial");
 | |
|       } else {
 | |
|         VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter_partial");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (Index i = 0; i < N * 7; ++i) {
 | |
|       buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize);
 | |
|     }
 | |
|     packet = internal::pgather_partial<Scalar, Packet>(buffer, 7, N);
 | |
|     internal::pstore_partial(data1, packet, N);
 | |
|     for (Index i = 0; i < N; ++i) {
 | |
|       VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather_partial");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace Eigen {
 | |
| namespace test {
 | |
| 
 | |
| template <typename Scalar, typename PacketType>
 | |
| struct runall<Scalar, PacketType, false, false> {  // i.e. float or double
 | |
|   static void run() {
 | |
|     packetmath<Scalar, PacketType>();
 | |
|     packetmath_scatter_gather<Scalar, PacketType>();
 | |
|     packetmath_notcomplex<Scalar, PacketType>();
 | |
|     packetmath_real<Scalar, PacketType>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename PacketType>
 | |
| struct runall<Scalar, PacketType, false, true> {  // i.e. int
 | |
|   static void run() {
 | |
|     packetmath<Scalar, PacketType>();
 | |
|     packetmath_scatter_gather<Scalar, PacketType>();
 | |
|     packetmath_notcomplex<Scalar, PacketType>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Scalar, typename PacketType>
 | |
| struct runall<Scalar, PacketType, true, false> {  // i.e. complex
 | |
|   static void run() {
 | |
|     packetmath<Scalar, PacketType>();
 | |
|     packetmath_scatter_gather<Scalar, PacketType>();
 | |
|     packetmath_complex<Scalar, PacketType>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace test
 | |
| }  // namespace Eigen
 | |
| 
 | |
| EIGEN_DECLARE_TEST(packetmath) {
 | |
|   g_first_pass = true;
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(test::runner<float>::run());
 | |
|     CALL_SUBTEST_2(test::runner<double>::run());
 | |
|     CALL_SUBTEST_3(test::runner<int8_t>::run());
 | |
|     CALL_SUBTEST_4(test::runner<uint8_t>::run());
 | |
|     CALL_SUBTEST_5(test::runner<int16_t>::run());
 | |
|     CALL_SUBTEST_6(test::runner<uint16_t>::run());
 | |
|     CALL_SUBTEST_7(test::runner<int32_t>::run());
 | |
|     CALL_SUBTEST_8(test::runner<uint32_t>::run());
 | |
|     CALL_SUBTEST_9(test::runner<int64_t>::run());
 | |
|     CALL_SUBTEST_10(test::runner<uint64_t>::run());
 | |
|     CALL_SUBTEST_11(test::runner<std::complex<float>>::run());
 | |
|     CALL_SUBTEST_12(test::runner<std::complex<double>>::run());
 | |
|     CALL_SUBTEST_13(test::runner<half>::run());
 | |
|     CALL_SUBTEST_14((packetmath<bool, internal::packet_traits<bool>::type>()));
 | |
|     CALL_SUBTEST_15(test::runner<bfloat16>::run());
 | |
|     g_first_pass = false;
 | |
|   }
 | |
| }
 | 
