373 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void product_extra(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::Flags & RowMajorBit> OtherMajorMatrixType;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols),
 | |
|              mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows),
 | |
|              square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows),
 | |
|              square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols);
 | |
|   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
 | |
|   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
 | |
|   OtherMajorMatrixType tm1 = m1;
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>();
 | |
| 
 | |
|   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval());
 | |
|   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval());
 | |
|   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2);
 | |
|   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2);
 | |
|   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2);
 | |
|   VERIFY_IS_APPROX(m3.noalias() = (-m1.adjoint() * s1) * (s3 * m2), (-m1.adjoint() * s1).eval() * (s3 * m2).eval());
 | |
|   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2);
 | |
|   VERIFY_IS_APPROX(m3.noalias() = (-m1 * s2) * s1 * m2.adjoint(), (-m1 * s2).eval() * (s1 * m2.adjoint()).eval());
 | |
| 
 | |
|   // a very tricky case where a scale factor has to be automatically conjugated:
 | |
|   VERIFY_IS_APPROX(m1.adjoint() * (s1 * m2).conjugate(), (m1.adjoint()).eval() * ((s1 * m2).conjugate()).eval());
 | |
| 
 | |
|   // test all possible conjugate combinations for the four matrix-vector product cases:
 | |
| 
 | |
|   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate() * s2).eval() * (s1 * vc2).eval());
 | |
|   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1 * s2).eval() * (s1 * vc2.conjugate()).eval());
 | |
|   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
 | |
|                    (-m1.conjugate() * s2).eval() * (s1 * vc2.conjugate()).eval());
 | |
| 
 | |
|   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
 | |
|                    (s1 * vc2.transpose()).eval() * (-m1.adjoint() * s2).eval());
 | |
|   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
 | |
|                    (s1 * vc2.adjoint()).eval() * (-m1.transpose() * s2).eval());
 | |
|   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
 | |
|                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint() * s2).eval());
 | |
| 
 | |
|   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
 | |
|                    (-m1.adjoint() * s2).eval() * (s1 * v1.transpose()).eval());
 | |
|   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
 | |
|                    (-m1.transpose() * s2).eval() * (s1 * v1.adjoint()).eval());
 | |
|   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
 | |
|                    (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval());
 | |
| 
 | |
|   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate() * s2).eval());
 | |
|   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1 * s2).eval());
 | |
|   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
 | |
|                    (s1 * v1.conjugate()).eval() * (-m1.conjugate() * s2).eval());
 | |
| 
 | |
|   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
 | |
|                    (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval());
 | |
| 
 | |
|   // test the vector-matrix product with non aligned starts
 | |
|   Index i = internal::random<Index>(0, m1.rows() - 2);
 | |
|   Index j = internal::random<Index>(0, m1.cols() - 2);
 | |
|   Index r = internal::random<Index>(1, m1.rows() - i);
 | |
|   Index c = internal::random<Index>(1, m1.cols() - j);
 | |
|   Index i2 = internal::random<Index>(0, m1.rows() - 1);
 | |
|   Index j2 = internal::random<Index>(0, m1.cols() - 1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0, j, m1.rows(), c),
 | |
|                    m1.col(j2).adjoint().eval() * m1.block(0, j, m1.rows(), c).eval());
 | |
|   VERIFY_IS_APPROX(m1.block(i, 0, r, m1.cols()) * m1.row(i2).adjoint(),
 | |
|                    m1.block(i, 0, r, m1.cols()).eval() * m1.row(i2).adjoint().eval());
 | |
| 
 | |
|   // test negative strides
 | |
|   {
 | |
|     Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map1(&m1(rows - 1, cols - 1), rows, cols,
 | |
|                                                                Stride<Dynamic, Dynamic>(-m1.outerStride(), -1));
 | |
|     Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map2(&m2(rows - 1, cols - 1), rows, cols,
 | |
|                                                                Stride<Dynamic, Dynamic>(-m2.outerStride(), -1));
 | |
|     Map<RowVectorType, Unaligned, InnerStride<-1> > mapv1(&v1(v1.size() - 1), v1.size(), InnerStride<-1>(-1));
 | |
|     Map<ColVectorType, Unaligned, InnerStride<-1> > mapvc2(&vc2(vc2.size() - 1), vc2.size(), InnerStride<-1>(-1));
 | |
|     VERIFY_IS_APPROX(MatrixType(map1), m1.reverse());
 | |
|     VERIFY_IS_APPROX(MatrixType(map2), m2.reverse());
 | |
|     VERIFY_IS_APPROX(m3.noalias() = MatrixType(map1) * MatrixType(map2).adjoint(),
 | |
|                      m1.reverse() * m2.reverse().adjoint());
 | |
|     VERIFY_IS_APPROX(m3.noalias() = map1 * map2.adjoint(), m1.reverse() * m2.reverse().adjoint());
 | |
|     VERIFY_IS_APPROX(map1 * vc2, m1.reverse() * vc2);
 | |
|     VERIFY_IS_APPROX(m1 * mapvc2, m1 * mapvc2);
 | |
|     VERIFY_IS_APPROX(map1.adjoint() * v1.transpose(), m1.adjoint().reverse() * v1.transpose());
 | |
|     VERIFY_IS_APPROX(m1.adjoint() * mapv1.transpose(), m1.adjoint() * v1.reverse().transpose());
 | |
|   }
 | |
| 
 | |
|   // regression test
 | |
|   MatrixType tmp = m1 * m1.adjoint() * s1;
 | |
|   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
 | |
| 
 | |
|   // regression test for bug 1343, assignment to arrays
 | |
|   Array<Scalar, Dynamic, 1> a1 = m1 * vc2;
 | |
|   VERIFY_IS_APPROX(a1.matrix(), m1 * vc2);
 | |
|   Array<Scalar, Dynamic, 1> a2 = s1 * (m1 * vc2);
 | |
|   VERIFY_IS_APPROX(a2.matrix(), s1 * m1 * vc2);
 | |
|   Array<Scalar, 1, Dynamic> a3 = v1 * m1;
 | |
|   VERIFY_IS_APPROX(a3.matrix(), v1 * m1);
 | |
|   Array<Scalar, Dynamic, Dynamic> a4 = m1 * m2.adjoint();
 | |
|   VERIFY_IS_APPROX(a4.matrix(), m1 * m2.adjoint());
 | |
| }
 | |
| 
 | |
| // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
 | |
| void mat_mat_scalar_scalar_product() {
 | |
|   Eigen::Matrix2Xd dNdxy(2, 3);
 | |
|   dNdxy << -0.5, 0.5, 0, -0.3, 0, 0.3;
 | |
|   double det = 6.0, wt = 0.5;
 | |
|   VERIFY_IS_APPROX(dNdxy.transpose() * dNdxy * det * wt, det * wt * dNdxy.transpose() * dNdxy);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void zero_sized_objects(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   const int PacketSize = internal::packet_traits<Scalar>::size;
 | |
|   const int PacketSize1 = PacketSize > 1 ? PacketSize - 1 : 1;
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   {
 | |
|     MatrixType res, a(rows, 0), b(0, cols);
 | |
|     VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(rows, cols));
 | |
|     VERIFY_IS_APPROX((res = a * a.transpose()), MatrixType::Zero(rows, rows));
 | |
|     VERIFY_IS_APPROX((res = b.transpose() * b), MatrixType::Zero(cols, cols));
 | |
|     VERIFY_IS_APPROX((res = b.transpose() * a.transpose()), MatrixType::Zero(cols, rows));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     MatrixType res, a(rows, cols), b(cols, 0);
 | |
|     res = a * b;
 | |
|     VERIFY(res.rows() == rows && res.cols() == 0);
 | |
|     b.resize(0, rows);
 | |
|     res = b * a;
 | |
|     VERIFY(res.rows() == 0 && res.cols() == cols);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Matrix<Scalar, PacketSize, 0> a;
 | |
|     Matrix<Scalar, 0, 1> b;
 | |
|     Matrix<Scalar, PacketSize, 1> res;
 | |
|     VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1));
 | |
|     VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Matrix<Scalar, PacketSize1, 0> a;
 | |
|     Matrix<Scalar, 0, 1> b;
 | |
|     Matrix<Scalar, PacketSize1, 1> res;
 | |
|     VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1));
 | |
|     VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Matrix<Scalar, PacketSize, Dynamic> a(PacketSize, 0);
 | |
|     Matrix<Scalar, Dynamic, 1> b(0, 1);
 | |
|     Matrix<Scalar, PacketSize, 1> res;
 | |
|     VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1));
 | |
|     VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Matrix<Scalar, PacketSize1, Dynamic> a(PacketSize1, 0);
 | |
|     Matrix<Scalar, Dynamic, 1> b(0, 1);
 | |
|     Matrix<Scalar, PacketSize1, 1> res;
 | |
|     VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1));
 | |
|     VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug_127() {
 | |
|   // Bug 127
 | |
|   //
 | |
|   // a product of the form lhs*rhs with
 | |
|   //
 | |
|   // lhs:
 | |
|   // rows = 1, cols = 4
 | |
|   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
 | |
|   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
 | |
|   //
 | |
|   // rhs:
 | |
|   // rows = 4, cols = 0
 | |
|   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
 | |
|   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
 | |
|   //
 | |
|   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using
 | |
|   // the max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
 | |
| 
 | |
|   Matrix<float, 1, Dynamic, RowMajor, 1, 5> a(1, 4);
 | |
|   Matrix<float, Dynamic, Dynamic, ColMajor, 5, 1> b(4, 0);
 | |
|   a* b;
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug_817() {
 | |
|   ArrayXXf B = ArrayXXf::Random(10, 10), C;
 | |
|   VectorXf x = VectorXf::Random(10);
 | |
|   C = (x.transpose() * B.matrix());
 | |
|   B = (x.transpose() * B.matrix());
 | |
|   VERIFY_IS_APPROX(B, C);
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void unaligned_objects() {
 | |
|   // Regression test for the bug reported here:
 | |
|   // http://forum.kde.org/viewtopic.php?f=74&t=107541
 | |
|   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
 | |
|   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
 | |
|   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
 | |
|   for (int m = 450; m < 460; ++m) {
 | |
|     for (int n = 8; n < 12; ++n) {
 | |
|       MatrixXf M(m, n);
 | |
|       VectorXf v1(n), r1(500);
 | |
|       RowVectorXf v2(m), r2(16);
 | |
| 
 | |
|       M.setRandom();
 | |
|       v1.setRandom();
 | |
|       v2.setRandom();
 | |
|       for (int o = 0; o < 4; ++o) {
 | |
|         r1.segment(o, m).noalias() = M * v1;
 | |
|         VERIFY_IS_APPROX(r1.segment(o, m), M * MatrixXf(v1));
 | |
|         r2.segment(o, n).noalias() = v2 * M;
 | |
|         VERIFY_IS_APPROX(r2.segment(o, n), MatrixXf(v2) * M);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE Index test_compute_block_size(Index m, Index n, Index k) {
 | |
|   Index mc(m), nc(n), kc(k);
 | |
|   internal::computeProductBlockingSizes<T, T>(kc, mc, nc);
 | |
|   return kc + mc + nc;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| Index compute_block_size() {
 | |
|   Index ret = 0;
 | |
|   ret += test_compute_block_size<T>(0, 1, 1);
 | |
|   ret += test_compute_block_size<T>(1, 0, 1);
 | |
|   ret += test_compute_block_size<T>(1, 1, 0);
 | |
|   ret += test_compute_block_size<T>(0, 0, 1);
 | |
|   ret += test_compute_block_size<T>(0, 1, 0);
 | |
|   ret += test_compute_block_size<T>(1, 0, 0);
 | |
|   ret += test_compute_block_size<T>(0, 0, 0);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| template <typename>
 | |
| void aliasing_with_resize() {
 | |
|   Index m = internal::random<Index>(10, 50);
 | |
|   Index n = internal::random<Index>(10, 50);
 | |
|   MatrixXd A, B, C(m, n), D(m, m);
 | |
|   VectorXd a, b, c(n);
 | |
|   C.setRandom();
 | |
|   D.setRandom();
 | |
|   c.setRandom();
 | |
|   double s = internal::random<double>(1, 10);
 | |
| 
 | |
|   A = C;
 | |
|   B = A * A.transpose();
 | |
|   A = A * A.transpose();
 | |
|   VERIFY_IS_APPROX(A, B);
 | |
| 
 | |
|   A = C;
 | |
|   B = (A * A.transpose()) / s;
 | |
|   A = (A * A.transpose()) / s;
 | |
|   VERIFY_IS_APPROX(A, B);
 | |
| 
 | |
|   A = C;
 | |
|   B = (A * A.transpose()) + D;
 | |
|   A = (A * A.transpose()) + D;
 | |
|   VERIFY_IS_APPROX(A, B);
 | |
| 
 | |
|   A = C;
 | |
|   B = D + (A * A.transpose());
 | |
|   A = D + (A * A.transpose());
 | |
|   VERIFY_IS_APPROX(A, B);
 | |
| 
 | |
|   A = C;
 | |
|   B = s * (A * A.transpose());
 | |
|   A = s * (A * A.transpose());
 | |
|   VERIFY_IS_APPROX(A, B);
 | |
| 
 | |
|   A = C;
 | |
|   a = c;
 | |
|   b = (A * a) / s;
 | |
|   a = (A * a) / s;
 | |
|   VERIFY_IS_APPROX(a, b);
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug_1308() {
 | |
|   int n = 10;
 | |
|   MatrixXd r(n, n);
 | |
|   VectorXd v = VectorXd::Random(n);
 | |
|   r = v * RowVectorXd::Ones(n);
 | |
|   VERIFY_IS_APPROX(r, v.rowwise().replicate(n));
 | |
|   r = VectorXd::Ones(n) * v.transpose();
 | |
|   VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose());
 | |
| 
 | |
|   Matrix4d ones44 = Matrix4d::Ones();
 | |
|   Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones();
 | |
|   VERIFY_IS_APPROX(m44, Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(m44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(m44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4));
 | |
| 
 | |
|   typedef Matrix<double, 4, 4, RowMajor> RMatrix4d;
 | |
|   RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones();
 | |
|   VERIFY_IS_APPROX(r44, Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = ones44 * RMatrix4d::Ones(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * RMatrix4d::Ones(), Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44, Matrix4d::Constant(4));
 | |
|   VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4));
 | |
| 
 | |
|   //   RowVector4d r4;
 | |
|   m44.setOnes();
 | |
|   r44.setZero();
 | |
|   VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44);
 | |
|   r44.setZero();
 | |
|   VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44);
 | |
|   r44.setZero();
 | |
|   VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44);
 | |
|   r44.setZero();
 | |
|   VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(product_extra) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(product_extra(
 | |
|         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_2(product_extra(
 | |
|         MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_2(mat_mat_scalar_scalar_product());
 | |
|     CALL_SUBTEST_3(product_extra(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                                            internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_4(product_extra(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                                            internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_1(zero_sized_objects(
 | |
|         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   }
 | |
|   CALL_SUBTEST_5(bug_127<0>());
 | |
|   CALL_SUBTEST_5(bug_817<0>());
 | |
|   CALL_SUBTEST_5(bug_1308<0>());
 | |
|   CALL_SUBTEST_6(unaligned_objects<0>());
 | |
|   CALL_SUBTEST_7(compute_block_size<float>());
 | |
|   CALL_SUBTEST_7(compute_block_size<double>());
 | |
|   CALL_SUBTEST_7(compute_block_size<std::complex<double> >());
 | |
|   CALL_SUBTEST_8(aliasing_with_resize<void>());
 | |
| }
 | 
