151 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "product.h"
 | |
| #include <Eigen/LU>
 | |
| 
 | |
| template <typename T>
 | |
| void test_aliasing() {
 | |
|   int rows = internal::random<int>(1, 12);
 | |
|   int cols = internal::random<int>(1, 12);
 | |
|   typedef Matrix<T, Dynamic, Dynamic> MatrixType;
 | |
|   typedef Matrix<T, Dynamic, 1> VectorType;
 | |
|   VectorType x(cols);
 | |
|   x.setRandom();
 | |
|   VectorType z(x);
 | |
|   VectorType y(rows);
 | |
|   y.setZero();
 | |
|   MatrixType A(rows, cols);
 | |
|   A.setRandom();
 | |
|   // CwiseBinaryOp
 | |
|   VERIFY_IS_APPROX(x = y + A * x, A * z);  // OK because "y + A*x" is marked as "assume-aliasing"
 | |
|   x = z;
 | |
|   // CwiseUnaryOp
 | |
|   VERIFY_IS_APPROX(x = T(1.) * (A * x),
 | |
|                    A * z);  // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression
 | |
|   x = z;
 | |
|   // VERIFY_IS_APPROX(x = y-A*x, -A*z);   // Not OK in 3.3 because x is resized before A*x gets evaluated
 | |
|   x = z;
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void product_large_regressions() {
 | |
|   {
 | |
|     // test a specific issue in DiagonalProduct
 | |
|     int N = 1000000;
 | |
|     VectorXf v = VectorXf::Ones(N);
 | |
|     MatrixXf m = MatrixXf::Ones(N, 3);
 | |
|     m = (v + v).asDiagonal() * m;
 | |
|     VERIFY_IS_APPROX(m, MatrixXf::Constant(N, 3, 2));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // test deferred resizing in Matrix::operator=
 | |
|     MatrixXf a = MatrixXf::Random(10, 4), b = MatrixXf::Random(4, 10), c = a;
 | |
|     VERIFY_IS_APPROX((a = a * b), (c * b).eval());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // check the functions to setup blocking sizes compile and do not segfault
 | |
|     // FIXME check they do what they are supposed to do !!
 | |
|     std::ptrdiff_t l1 = internal::random<int>(10000, 20000);
 | |
|     std::ptrdiff_t l2 = internal::random<int>(100000, 200000);
 | |
|     std::ptrdiff_t l3 = internal::random<int>(1000000, 2000000);
 | |
|     setCpuCacheSizes(l1, l2, l3);
 | |
|     VERIFY(l1 == l1CacheSize());
 | |
|     VERIFY(l2 == l2CacheSize());
 | |
|     std::ptrdiff_t k1 = internal::random<int>(10, 100) * 16;
 | |
|     std::ptrdiff_t m1 = internal::random<int>(10, 100) * 16;
 | |
|     std::ptrdiff_t n1 = internal::random<int>(10, 100) * 16;
 | |
|     // only makes sure it compiles fine
 | |
|     internal::computeProductBlockingSizes<float, float, std::ptrdiff_t>(k1, m1, n1, 1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // test regression in row-vector by matrix (bad Map type)
 | |
|     MatrixXf mat1(10, 32);
 | |
|     mat1.setRandom();
 | |
|     MatrixXf mat2(32, 32);
 | |
|     mat2.setRandom();
 | |
|     MatrixXf r1 = mat1.row(2) * mat2.transpose();
 | |
|     VERIFY_IS_APPROX(r1, (mat1.row(2) * mat2.transpose()).eval());
 | |
| 
 | |
|     MatrixXf r2 = mat1.row(2) * mat2;
 | |
|     VERIFY_IS_APPROX(r2, (mat1.row(2) * mat2).eval());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Eigen::MatrixXd A(10, 10), B, C;
 | |
|     A.setRandom();
 | |
|     C = A;
 | |
|     for (int k = 0; k < 79; ++k) C = C * A;
 | |
|     B.noalias() =
 | |
|         (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) *
 | |
|          ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))) *
 | |
|         (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) *
 | |
|          ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)));
 | |
|     VERIFY_IS_APPROX(B, C);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug_1622() {
 | |
|   typedef Matrix<double, 2, -1, 0, 2, -1> Mat2X;
 | |
|   Mat2X x(2, 2);
 | |
|   x.setRandom();
 | |
|   MatrixXd y(2, 2);
 | |
|   y.setRandom();
 | |
|   const Mat2X K1 = x * y.inverse();
 | |
|   const Matrix2d K2 = x * y.inverse();
 | |
|   VERIFY_IS_APPROX(K1, K2);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(product_large) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(product(
 | |
|         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_2(product(
 | |
|         MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_2(product(MatrixXd(internal::random<int>(1, 10), internal::random<int>(1, 10))));
 | |
| 
 | |
|     CALL_SUBTEST_3(product(
 | |
|         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_4(product(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                                      internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_5(product(Matrix<float, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
 | |
|                                                                      internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
| 
 | |
|     CALL_SUBTEST_1(test_aliasing<float>());
 | |
| 
 | |
|     CALL_SUBTEST_6(bug_1622<1>());
 | |
| 
 | |
|     CALL_SUBTEST_7(product(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                                      internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_8(product(Matrix<double, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
 | |
|                                                                       internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_9(product(Matrix<std::complex<float>, Dynamic, Dynamic, RowMajor>(
 | |
|         internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_10(product(Matrix<std::complex<double>, Dynamic, Dynamic, RowMajor>(
 | |
|         internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_11(product(Matrix<bfloat16, Dynamic, Dynamic, RowMajor>(
 | |
|         internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_6(product_large_regressions<0>());
 | |
| 
 | |
|   // Regression test for bug 714:
 | |
| #if defined EIGEN_HAS_OPENMP
 | |
|   omp_set_dynamic(1);
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_6(product(Matrix<float, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
 | |
|                                                            internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   }
 | |
| #endif
 | |
| }
 | 
