342 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "product.h"
 | |
| #include <Eigen/LU>
 | |
| 
 | |
| // regression test for bug 447
 | |
| template <int>
 | |
| void product1x1() {
 | |
|   Matrix<float, 1, 3> matAstatic;
 | |
|   Matrix<float, 3, 1> matBstatic;
 | |
|   matAstatic.setRandom();
 | |
|   matBstatic.setRandom();
 | |
|   VERIFY_IS_APPROX((matAstatic * matBstatic).coeff(0, 0), matAstatic.cwiseProduct(matBstatic.transpose()).sum());
 | |
| 
 | |
|   MatrixXf matAdynamic(1, 3);
 | |
|   MatrixXf matBdynamic(3, 1);
 | |
|   matAdynamic.setRandom();
 | |
|   matBdynamic.setRandom();
 | |
|   VERIFY_IS_APPROX((matAdynamic * matBdynamic).coeff(0, 0), matAdynamic.cwiseProduct(matBdynamic.transpose()).sum());
 | |
| }
 | |
| 
 | |
| template <typename TC, typename TA, typename TB>
 | |
| const TC &ref_prod(TC &C, const TA &A, const TB &B) {
 | |
|   for (Index i = 0; i < C.rows(); ++i)
 | |
|     for (Index j = 0; j < C.cols(); ++j)
 | |
|       for (Index k = 0; k < A.cols(); ++k) C.coeffRef(i, j) += A.coeff(i, k) * B.coeff(k, j);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| template <typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB>
 | |
| std::enable_if_t<!((Rows == 1 && Depth != 1 && OA == ColMajor) || (Depth == 1 && Rows != 1 && OA == RowMajor) ||
 | |
|                    (Cols == 1 && Depth != 1 && OB == RowMajor) || (Depth == 1 && Cols != 1 && OB == ColMajor) ||
 | |
|                    (Rows == 1 && Cols != 1 && OC == ColMajor) || (Cols == 1 && Rows != 1 && OC == RowMajor)),
 | |
|                  void>
 | |
| test_lazy_single(int rows, int cols, int depth) {
 | |
|   Matrix<T, Rows, Depth, OA> A(rows, depth);
 | |
|   A.setRandom();
 | |
|   Matrix<T, Depth, Cols, OB> B(depth, cols);
 | |
|   B.setRandom();
 | |
|   Matrix<T, Rows, Cols, OC> C(rows, cols);
 | |
|   C.setRandom();
 | |
|   Matrix<T, Rows, Cols, OC> D(C);
 | |
|   VERIFY_IS_APPROX(C += A.lazyProduct(B), ref_prod(D, A, B));
 | |
| }
 | |
| 
 | |
| void test_dynamic_bool() {
 | |
|   int rows = internal::random<int>(1, 64);
 | |
|   int cols = internal::random<int>(1, 64);
 | |
|   int depth = internal::random<int>(1, 65);
 | |
| 
 | |
|   typedef Matrix<bool, Dynamic, Dynamic> MatrixX;
 | |
|   MatrixX A(rows, depth);
 | |
|   A.setRandom();
 | |
|   MatrixX B(depth, cols);
 | |
|   B.setRandom();
 | |
|   MatrixX C(rows, cols);
 | |
|   C.setRandom();
 | |
|   MatrixX D(C);
 | |
|   for (Index i = 0; i < C.rows(); ++i)
 | |
|     for (Index j = 0; j < C.cols(); ++j)
 | |
|       for (Index k = 0; k < A.cols(); ++k) D.coeffRef(i, j) |= (A.coeff(i, k) && B.coeff(k, j));
 | |
|   C += A * B;
 | |
|   VERIFY_IS_EQUAL(C, D);
 | |
| 
 | |
|   MatrixX E = B.transpose();
 | |
|   for (Index i = 0; i < B.rows(); ++i)
 | |
|     for (Index j = 0; j < B.cols(); ++j) VERIFY_IS_EQUAL(B(i, j), E(j, i));
 | |
| }
 | |
| 
 | |
| template <typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB>
 | |
| std::enable_if_t<((Rows == 1 && Depth != 1 && OA == ColMajor) || (Depth == 1 && Rows != 1 && OA == RowMajor) ||
 | |
|                   (Cols == 1 && Depth != 1 && OB == RowMajor) || (Depth == 1 && Cols != 1 && OB == ColMajor) ||
 | |
|                   (Rows == 1 && Cols != 1 && OC == ColMajor) || (Cols == 1 && Rows != 1 && OC == RowMajor)),
 | |
|                  void>
 | |
| test_lazy_single(int, int, int) {}
 | |
| 
 | |
| template <typename T, int Rows, int Cols, int Depth>
 | |
| void test_lazy_all_layout(int rows = Rows, int cols = Cols, int depth = Depth) {
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, ColMajor, ColMajor, ColMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, RowMajor, ColMajor, ColMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, ColMajor, RowMajor, ColMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, RowMajor, RowMajor, ColMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, ColMajor, ColMajor, RowMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, RowMajor, ColMajor, RowMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, ColMajor, RowMajor, RowMajor>(rows, cols, depth)));
 | |
|   CALL_SUBTEST((test_lazy_single<T, Rows, Cols, Depth, RowMajor, RowMajor, RowMajor>(rows, cols, depth)));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_lazy_l1() {
 | |
|   int rows = internal::random<int>(1, 12);
 | |
|   int cols = internal::random<int>(1, 12);
 | |
|   int depth = internal::random<int>(1, 12);
 | |
| 
 | |
|   // Inner
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 1, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 1, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 1, 3>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 1, 8>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 1, 9>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 1, -1>(1, 1, depth)));
 | |
| 
 | |
|   // Outer
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 1, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 2, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 2, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 3, 3, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 4, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 8, 1>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, -1, 1>(4, cols)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 7, -1, 1>(7, cols)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, 8, 1>(rows)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, 3, 1>(rows)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, -1, 1>(rows, cols)));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_lazy_l2() {
 | |
|   int rows = internal::random<int>(1, 12);
 | |
|   int cols = internal::random<int>(1, 12);
 | |
|   int depth = internal::random<int>(1, 12);
 | |
| 
 | |
|   // mat-vec
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 1, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 1, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 1, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 1, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 5, 1, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 1, 5>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 1, 6>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 6, 1, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 8, 1, 8>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, 1, 4>(rows)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 1, -1>(4, 1, depth)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, 1, -1>(rows, 1, depth)));
 | |
| 
 | |
|   // vec-mat
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 2, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 2, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 4, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 4, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 5, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 4, 5>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 4, 6>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 6, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 8, 8>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, -1, 4>(1, cols)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, 4, -1>(1, 4, depth)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 1, -1, -1>(1, cols, depth)));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_lazy_l3() {
 | |
|   int rows = internal::random<int>(1, 12);
 | |
|   int cols = internal::random<int>(1, 12);
 | |
|   int depth = internal::random<int>(1, 12);
 | |
|   // mat-mat
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 4, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 6, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 3, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 8, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 5, 6, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 2, 5>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 7, 6>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 6, 8, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 8, 3, 8>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, 6, 4>(rows)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 3, -1>(4, 3, depth)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, -1, 6, -1>(rows, 6, depth)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 8, 2, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 5, 2, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 4, 2>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 8, 4, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 6, 5, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, 4, 5>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 3, 4, 6>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 2, 6, 4>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 7, 8, 8>()));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 8, -1, 4>(8, cols)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 3, 4, -1>(3, 4, depth)));
 | |
|   CALL_SUBTEST((test_lazy_all_layout<T, 4, -1, -1>(4, cols, depth)));
 | |
| }
 | |
| 
 | |
| template <typename T, int N, int M, int K>
 | |
| void test_linear_but_not_vectorizable() {
 | |
|   // Check tricky cases for which the result of the product is a vector and thus must exhibit the LinearBit flag,
 | |
|   // but is not vectorizable along the linear dimension.
 | |
|   Index n = N == Dynamic ? internal::random<Index>(1, 32) : N;
 | |
|   Index m = M == Dynamic ? internal::random<Index>(1, 32) : M;
 | |
|   Index k = K == Dynamic ? internal::random<Index>(1, 32) : K;
 | |
| 
 | |
|   {
 | |
|     Matrix<T, N, M + 1> A;
 | |
|     A.setRandom(n, m + 1);
 | |
|     Matrix<T, M * 2, K> B;
 | |
|     B.setRandom(m * 2, k);
 | |
|     Matrix<T, 1, K> C;
 | |
|     Matrix<T, 1, K> R;
 | |
| 
 | |
|     C.noalias() = A.template topLeftCorner<1, M>() * (B.template topRows<M>() + B.template bottomRows<M>());
 | |
|     R.noalias() = A.template topLeftCorner<1, M>() * (B.template topRows<M>() + B.template bottomRows<M>()).eval();
 | |
|     VERIFY_IS_APPROX(C, R);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Matrix<T, M + 1, N, RowMajor> A;
 | |
|     A.setRandom(m + 1, n);
 | |
|     Matrix<T, K, M * 2, RowMajor> B;
 | |
|     B.setRandom(k, m * 2);
 | |
|     Matrix<T, K, 1> C;
 | |
|     Matrix<T, K, 1> R;
 | |
| 
 | |
|     C.noalias() = (B.template leftCols<M>() + B.template rightCols<M>()) * A.template topLeftCorner<M, 1>();
 | |
|     R.noalias() = (B.template leftCols<M>() + B.template rightCols<M>()).eval() * A.template topLeftCorner<M, 1>();
 | |
|     VERIFY_IS_APPROX(C, R);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <int Rows>
 | |
| void bug_1311() {
 | |
|   Matrix<double, Rows, 2> A;
 | |
|   A.setRandom();
 | |
|   Vector2d b = Vector2d::Random();
 | |
|   Matrix<double, Rows, 1> res;
 | |
|   res.noalias() = 1. * (A * b);
 | |
|   VERIFY_IS_APPROX(res, A * b);
 | |
|   res.noalias() = 1. * A * b;
 | |
|   VERIFY_IS_APPROX(res, A * b);
 | |
|   res.noalias() = (1. * A).lazyProduct(b);
 | |
|   VERIFY_IS_APPROX(res, A * b);
 | |
|   res.noalias() = (1. * A).lazyProduct(1. * b);
 | |
|   VERIFY_IS_APPROX(res, A * b);
 | |
|   res.noalias() = (A).lazyProduct(1. * b);
 | |
|   VERIFY_IS_APPROX(res, A * b);
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void product_small_regressions() {
 | |
|   {
 | |
|     // test compilation of (outer_product) * vector
 | |
|     Vector3f v = Vector3f::Random();
 | |
|     VERIFY_IS_APPROX((v * v.transpose()) * v, (v * v.transpose()).eval() * v);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // regression test for pull-request #93
 | |
|     Eigen::Matrix<double, 1, 1> A;
 | |
|     A.setRandom();
 | |
|     Eigen::Matrix<double, 18, 1> B;
 | |
|     B.setRandom();
 | |
|     Eigen::Matrix<double, 1, 18> C;
 | |
|     C.setRandom();
 | |
|     VERIFY_IS_APPROX(B * A.inverse(), B * A.inverse()[0]);
 | |
|     VERIFY_IS_APPROX(A.inverse() * C, A.inverse()[0] * C);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Eigen::Matrix<double, 10, 10> A, B, C;
 | |
|     A.setRandom();
 | |
|     C = A;
 | |
|     for (int k = 0; k < 79; ++k) C = C * A;
 | |
|     B.noalias() =
 | |
|         (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) *
 | |
|          ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))) *
 | |
|         (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) *
 | |
|          ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)));
 | |
|     VERIFY_IS_APPROX(B, C);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void product_sweep(int max_m, int max_k, int max_n) {
 | |
|   using Matrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
 | |
|   for (int m = 1; m < max_m; ++m) {
 | |
|     for (int n = 1; n < max_n; ++n) {
 | |
|       Matrix C = Matrix::Zero(m, n);
 | |
|       Matrix Cref = Matrix::Zero(m, n);
 | |
|       for (int k = 1; k < max_k; ++k) {
 | |
|         Matrix A = Matrix::Random(m, k);
 | |
|         Matrix B = Matrix::Random(k, n);
 | |
|         C = A * B;
 | |
|         Cref.setZero();
 | |
|         ref_prod(Cref, A, B);
 | |
|         VERIFY_IS_APPROX(C, Cref);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(product_small) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(product(Matrix<float, 3, 2>()));
 | |
|     CALL_SUBTEST_2(product(Matrix<int, 3, 17>()));
 | |
|     CALL_SUBTEST_8(product(Matrix<double, 3, 17>()));
 | |
|     CALL_SUBTEST_3(product(Matrix3d()));
 | |
|     CALL_SUBTEST_4(product(Matrix4d()));
 | |
|     CALL_SUBTEST_5(product(Matrix4f()));
 | |
|     CALL_SUBTEST_10(product(Matrix<bfloat16, 3, 2>()));
 | |
|     CALL_SUBTEST_6(product1x1<0>());
 | |
| 
 | |
|     CALL_SUBTEST_11(test_lazy_l1<float>());
 | |
|     CALL_SUBTEST_12(test_lazy_l2<float>());
 | |
|     CALL_SUBTEST_13(test_lazy_l3<float>());
 | |
| 
 | |
|     CALL_SUBTEST_21(test_lazy_l1<double>());
 | |
|     CALL_SUBTEST_22(test_lazy_l2<double>());
 | |
|     CALL_SUBTEST_23(test_lazy_l3<double>());
 | |
| 
 | |
|     CALL_SUBTEST_31(test_lazy_l1<std::complex<float> >());
 | |
|     CALL_SUBTEST_32(test_lazy_l2<std::complex<float> >());
 | |
|     CALL_SUBTEST_33(test_lazy_l3<std::complex<float> >());
 | |
| 
 | |
|     CALL_SUBTEST_41(test_lazy_l1<std::complex<double> >());
 | |
|     CALL_SUBTEST_42(test_lazy_l2<std::complex<double> >());
 | |
|     CALL_SUBTEST_43(test_lazy_l3<std::complex<double> >());
 | |
| 
 | |
|     CALL_SUBTEST_7((test_linear_but_not_vectorizable<float, 2, 1, Dynamic>()));
 | |
|     CALL_SUBTEST_7((test_linear_but_not_vectorizable<float, 3, 1, Dynamic>()));
 | |
|     CALL_SUBTEST_7((test_linear_but_not_vectorizable<float, 2, 1, 16>()));
 | |
| 
 | |
|     CALL_SUBTEST_6(bug_1311<3>());
 | |
|     CALL_SUBTEST_6(bug_1311<5>());
 | |
| 
 | |
|     CALL_SUBTEST_9(test_dynamic_bool());
 | |
| 
 | |
|     // Commonly specialized vectorized types.
 | |
|     CALL_SUBTEST_50(product_sweep<float>(10, 10, 10));
 | |
|     CALL_SUBTEST_51(product_sweep<double>(10, 10, 10));
 | |
|     CALL_SUBTEST_52(product_sweep<Eigen::half>(10, 10, 10));
 | |
|     CALL_SUBTEST_53(product_sweep<Eigen::bfloat16>(10, 10, 10));
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_6(product_small_regressions<0>());
 | |
| }
 | 
