165 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void syrk(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, RowMajor> RMatrixType;
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
 | |
|   typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic, RowMajor> Rhs3;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols),
 | |
|              m3 = MatrixType::Random(rows, cols);
 | |
|   RMatrixType rm2 = MatrixType::Random(rows, cols);
 | |
| 
 | |
|   Rhs1 rhs1 = Rhs1::Random(internal::random<int>(1, 320), cols);
 | |
|   Rhs1 rhs11 = Rhs1::Random(rhs1.rows(), cols);
 | |
|   Rhs2 rhs2 = Rhs2::Random(rows, internal::random<int>(1, 320));
 | |
|   Rhs2 rhs22 = Rhs2::Random(rows, rhs2.cols());
 | |
|   Rhs3 rhs3 = Rhs3::Random(internal::random<int>(1, 320), rows);
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
| 
 | |
|   Index c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2, s1)._expression()),
 | |
|                    ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX(((m2.template triangularView<Lower>() += s1 * rhs2 * rhs22.adjoint()).nestedExpression()),
 | |
|                    ((s1 * rhs2 * rhs22.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2, s1)._expression(),
 | |
|                    (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * rhs22 * rhs2.adjoint()).nestedExpression(),
 | |
|                    (s1 * rhs22 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(), s1)._expression(),
 | |
|                    (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * rhs11.adjoint() * rhs1).nestedExpression(),
 | |
|                    (s1 * rhs11.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(), s1)._expression(),
 | |
|                    (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix());
 | |
|   VERIFY_IS_APPROX((m2.template triangularView<Upper>() = s1 * rhs1.adjoint() * rhs11).nestedExpression(),
 | |
|                    (s1 * rhs1.adjoint() * rhs11).eval().template triangularView<Upper>().toDenseMatrix());
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(), s1)._expression(),
 | |
|                    (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix());
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(), s1)._expression(),
 | |
|                    (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix());
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c), s1)._expression()),
 | |
|                    ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c), s1)._expression()),
 | |
|                    ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
 | |
|   rm2.setZero();
 | |
|   VERIFY_IS_APPROX((rm2.template selfadjointView<Upper>().rankUpdate(m1.col(c), s1)._expression()),
 | |
|                    ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * m3.col(c) * m1.col(c).adjoint()).nestedExpression(),
 | |
|                    ((s1 * m3.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
 | |
|   rm2.setZero();
 | |
|   VERIFY_IS_APPROX((rm2.template triangularView<Upper>() += s1 * m1.col(c) * m3.col(c).adjoint()).nestedExpression(),
 | |
|                    ((s1 * m1.col(c) * m3.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c).conjugate(), s1)._expression()),
 | |
|                    ((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint())
 | |
|                         .eval()
 | |
|                         .template triangularView<Lower>()
 | |
|                         .toDenseMatrix()));
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c).conjugate(), s1)._expression()),
 | |
|                    ((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint())
 | |
|                         .eval()
 | |
|                         .template triangularView<Upper>()
 | |
|                         .toDenseMatrix()));
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.row(c), s1)._expression()),
 | |
|                    ((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint())
 | |
|                         .eval()
 | |
|                         .template triangularView<Lower>()
 | |
|                         .toDenseMatrix()));
 | |
|   rm2.setZero();
 | |
|   VERIFY_IS_APPROX((rm2.template selfadjointView<Lower>().rankUpdate(m1.row(c), s1)._expression()),
 | |
|                    ((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint())
 | |
|                         .eval()
 | |
|                         .template triangularView<Lower>()
 | |
|                         .toDenseMatrix()));
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
 | |
|                        .nestedExpression(),
 | |
|                    ((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
 | |
|                         .eval()
 | |
|                         .template triangularView<Lower>()
 | |
|                         .toDenseMatrix()));
 | |
|   rm2.setZero();
 | |
|   VERIFY_IS_APPROX(
 | |
|       (rm2.template triangularView<Lower>() += s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
 | |
|           .nestedExpression(),
 | |
|       ((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
 | |
|            .eval()
 | |
|            .template triangularView<Lower>()
 | |
|            .toDenseMatrix()));
 | |
| 
 | |
|   m2.setZero();
 | |
|   VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.row(c).adjoint(), s1)._expression()),
 | |
|                    ((s1 * m1.row(c).adjoint() * m1.row(c).adjoint().adjoint())
 | |
|                         .eval()
 | |
|                         .template triangularView<Upper>()
 | |
|                         .toDenseMatrix()));
 | |
| 
 | |
|   // destination with a non-default inner-stride
 | |
|   // see bug 1741
 | |
|   {
 | |
|     typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
 | |
|     MatrixX buffer(2 * rows, 2 * cols);
 | |
|     Map<MatrixType, 0, Stride<Dynamic, 2> > map1(buffer.data(), rows, cols, Stride<Dynamic, 2>(2 * rows, 2));
 | |
|     buffer.setZero();
 | |
|     VERIFY_IS_APPROX((map1.template selfadjointView<Lower>().rankUpdate(rhs2, s1)._expression()),
 | |
|                      ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(product_syrk) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     int s;
 | |
|     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE);
 | |
|     CALL_SUBTEST_1(syrk(MatrixXf(s, s)));
 | |
|     CALL_SUBTEST_2(syrk(MatrixXd(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| 
 | |
|     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2);
 | |
|     CALL_SUBTEST_3(syrk(MatrixXcf(s, s)));
 | |
|     CALL_SUBTEST_4(syrk(MatrixXcd(s, s)));
 | |
|     CALL_SUBTEST_5(syrk(Matrix<bfloat16, Dynamic, Dynamic>(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
|   }
 | |
| }
 | 
