356 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/QR>
 | |
| #include <Eigen/SVD>
 | |
| #include "solverbase.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void cod() {
 | |
|   Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
 | |
|   MatrixType matrix;
 | |
|   createRandomPIMatrixOfRank(rank, rows, cols, matrix);
 | |
|   CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
 | |
|   VERIFY(rank == cod.rank());
 | |
|   VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
 | |
|   VERIFY(!cod.isInjective());
 | |
|   VERIFY(!cod.isInvertible());
 | |
|   VERIFY(!cod.isSurjective());
 | |
| 
 | |
|   MatrixQType q = cod.householderQ();
 | |
|   VERIFY_IS_UNITARY(q);
 | |
| 
 | |
|   MatrixType z = cod.matrixZ();
 | |
|   VERIFY_IS_UNITARY(z);
 | |
| 
 | |
|   MatrixType t;
 | |
|   t.setZero(rows, cols);
 | |
|   t.topLeftCorner(rank, rank) = cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
 | |
| 
 | |
|   MatrixType c = q * t * z * cod.colsPermutation().inverse();
 | |
|   VERIFY_IS_APPROX(matrix, c);
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(matrix, cod, rows, cols, cols2);
 | |
| 
 | |
|   // Verify that we get the same minimum-norm solution as the SVD.
 | |
|   MatrixType exact_solution = MatrixType::Random(cols, cols2);
 | |
|   MatrixType rhs = matrix * exact_solution;
 | |
|   MatrixType cod_solution = cod.solve(rhs);
 | |
|   JacobiSVD<MatrixType, ComputeThinU | ComputeThinV> svd(matrix);
 | |
|   MatrixType svd_solution = svd.solve(rhs);
 | |
|   VERIFY_IS_APPROX(cod_solution, svd_solution);
 | |
| 
 | |
|   MatrixType pinv = cod.pseudoInverse();
 | |
|   VERIFY_IS_APPROX(cod_solution, pinv * rhs);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int Cols2>
 | |
| void cod_fixedsize() {
 | |
|   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > COD;
 | |
|   int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
 | |
|   Matrix<Scalar, Rows, Cols> matrix;
 | |
|   createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
 | |
|   COD cod(matrix);
 | |
|   VERIFY(rank == cod.rank());
 | |
|   VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
 | |
|   VERIFY(cod.isInjective() == (rank == Rows));
 | |
|   VERIFY(cod.isSurjective() == (rank == Cols));
 | |
|   VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
 | |
| 
 | |
|   check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(matrix, cod, Rows, Cols, Cols2);
 | |
| 
 | |
|   // Verify that we get the same minimum-norm solution as the SVD.
 | |
|   Matrix<Scalar, Cols, Cols2> exact_solution;
 | |
|   exact_solution.setRandom(Cols, Cols2);
 | |
|   Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
 | |
|   Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
 | |
|   JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(matrix);
 | |
|   Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
 | |
|   VERIFY_IS_APPROX(cod_solution, svd_solution);
 | |
| 
 | |
|   typename Inverse<COD>::PlainObject pinv = cod.pseudoInverse();
 | |
|   VERIFY_IS_APPROX(cod_solution, pinv * rhs);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr() {
 | |
|   using std::sqrt;
 | |
| 
 | |
|   Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE),
 | |
|         cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
 | |
|   MatrixType m1;
 | |
|   createRandomPIMatrixOfRank(rank, rows, cols, m1);
 | |
|   ColPivHouseholderQR<MatrixType> qr(m1);
 | |
|   VERIFY_IS_EQUAL(rank, qr.rank());
 | |
|   VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
 | |
|   VERIFY(!qr.isInjective());
 | |
|   VERIFY(!qr.isInvertible());
 | |
|   VERIFY(!qr.isSurjective());
 | |
| 
 | |
|   MatrixQType q = qr.householderQ();
 | |
|   VERIFY_IS_UNITARY(q);
 | |
| 
 | |
|   MatrixType r = qr.matrixQR().template triangularView<Upper>();
 | |
|   MatrixType c = q * r * qr.colsPermutation().inverse();
 | |
|   VERIFY_IS_APPROX(m1, c);
 | |
| 
 | |
|   // Verify that the absolute value of the diagonal elements in R are
 | |
|   // non-increasing until they reach the singularity threshold.
 | |
|   RealScalar threshold = sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
 | |
|   for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
 | |
|     RealScalar x = numext::abs(r(i, i));
 | |
|     RealScalar y = numext::abs(r(i + 1, i + 1));
 | |
|     if (x < threshold && y < threshold) continue;
 | |
|     if (!test_isApproxOrLessThan(y, x)) {
 | |
|       for (Index j = 0; j < (std::min)(rows, cols); ++j) {
 | |
|         std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
 | |
|       }
 | |
|       std::cout << "Failure at i=" << i << ", rank=" << rank << ", threshold=" << threshold << std::endl;
 | |
|     }
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
 | |
|   }
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2);
 | |
| 
 | |
|   {
 | |
|     MatrixType m2, m3;
 | |
|     Index size = rows;
 | |
|     do {
 | |
|       m1 = MatrixType::Random(size, size);
 | |
|       qr.compute(m1);
 | |
|     } while (!qr.isInvertible());
 | |
|     MatrixType m1_inv = qr.inverse();
 | |
|     m3 = m1 * MatrixType::Random(size, cols2);
 | |
|     m2 = qr.solve(m3);
 | |
|     VERIFY_IS_APPROX(m2, m1_inv * m3);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int Cols2>
 | |
| void qr_fixedsize() {
 | |
|   using std::abs;
 | |
|   using std::sqrt;
 | |
|   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
 | |
|   Matrix<Scalar, Rows, Cols> m1;
 | |
|   createRandomPIMatrixOfRank(rank, Rows, Cols, m1);
 | |
|   ColPivHouseholderQR<Matrix<Scalar, Rows, Cols> > qr(m1);
 | |
|   VERIFY_IS_EQUAL(rank, qr.rank());
 | |
|   VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
 | |
|   VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
 | |
|   VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
 | |
|   VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
 | |
| 
 | |
|   Matrix<Scalar, Rows, Cols> r = qr.matrixQR().template triangularView<Upper>();
 | |
|   Matrix<Scalar, Rows, Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
 | |
|   VERIFY_IS_APPROX(m1, c);
 | |
| 
 | |
|   check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(m1, qr, Rows, Cols, Cols2);
 | |
| 
 | |
|   // Verify that the absolute value of the diagonal elements in R are
 | |
|   // non-increasing until they reache the singularity threshold.
 | |
|   RealScalar threshold = sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
 | |
|   for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
 | |
|     RealScalar x = numext::abs(r(i, i));
 | |
|     RealScalar y = numext::abs(r(i + 1, i + 1));
 | |
|     if (x < threshold && y < threshold) continue;
 | |
|     if (!test_isApproxOrLessThan(y, x)) {
 | |
|       for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
 | |
|         std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
 | |
|       }
 | |
|       std::cout << "Failure at i=" << i << ", rank=" << rank << ", threshold=" << threshold << std::endl;
 | |
|     }
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This test is meant to verify that pivots are chosen such that
 | |
| // even for a graded matrix, the diagonal of R falls of roughly
 | |
| // monotonically until it reaches the threshold for singularity.
 | |
| // We use the so-called Kahan matrix, which is a famous counter-example
 | |
| // for rank-revealing QR. See
 | |
| // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
 | |
| // page 3 for more detail.
 | |
| template <typename MatrixType>
 | |
| void qr_kahan_matrix() {
 | |
|   using std::abs;
 | |
|   using std::sqrt;
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
| 
 | |
|   Index rows = 300, cols = rows;
 | |
| 
 | |
|   MatrixType m1;
 | |
|   m1.setZero(rows, cols);
 | |
|   RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
 | |
|   RealScalar c = std::sqrt(1 - s * s);
 | |
|   RealScalar pow_s_i(1.0);  // pow(s,i)
 | |
|   for (Index i = 0; i < rows; ++i) {
 | |
|     m1(i, i) = pow_s_i;
 | |
|     m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
 | |
|     pow_s_i *= s;
 | |
|   }
 | |
|   m1 = (m1 + m1.transpose()).eval();
 | |
|   ColPivHouseholderQR<MatrixType> qr(m1);
 | |
|   MatrixType r = qr.matrixQR().template triangularView<Upper>();
 | |
| 
 | |
|   RealScalar threshold = std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
 | |
|   for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
 | |
|     RealScalar x = numext::abs(r(i, i));
 | |
|     RealScalar y = numext::abs(r(i + 1, i + 1));
 | |
|     if (x < threshold && y < threshold) continue;
 | |
|     if (!test_isApproxOrLessThan(y, x)) {
 | |
|       for (Index j = 0; j < (std::min)(rows, cols); ++j) {
 | |
|         std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
 | |
|       }
 | |
|       std::cout << "Failure at i=" << i << ", rank=" << qr.rank() << ", threshold=" << threshold << std::endl;
 | |
|     }
 | |
|     VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr_invertible() {
 | |
|   using std::abs;
 | |
|   using std::log;
 | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   int size = internal::random<int>(10, 50);
 | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size);
 | |
|   m1 = MatrixType::Random(size, size);
 | |
| 
 | |
|   if (internal::is_same<RealScalar, float>::value) {
 | |
|     // let's build a matrix more stable to inverse
 | |
|     MatrixType a = MatrixType::Random(size, size * 2);
 | |
|     m1 += a * a.adjoint();
 | |
|   }
 | |
| 
 | |
|   ColPivHouseholderQR<MatrixType> qr(m1);
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
 | |
| 
 | |
|   // now construct a matrix with prescribed determinant
 | |
|   m1.setZero();
 | |
|   for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>();
 | |
|   Scalar det = m1.diagonal().prod();
 | |
|   RealScalar absdet = abs(det);
 | |
|   m3 = qr.householderQ();  // get a unitary
 | |
|   m1 = m3 * m1 * m3.adjoint();
 | |
|   qr.compute(m1);
 | |
|   VERIFY_IS_APPROX(det, qr.determinant());
 | |
|   VERIFY_IS_APPROX(absdet, qr.absDeterminant());
 | |
|   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr_verify_assert() {
 | |
|   MatrixType tmp;
 | |
| 
 | |
|   ColPivHouseholderQR<MatrixType> qr;
 | |
|   VERIFY_RAISES_ASSERT(qr.matrixQR())
 | |
|   VERIFY_RAISES_ASSERT(qr.solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.householderQ())
 | |
|   VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
 | |
|   VERIFY_RAISES_ASSERT(qr.isInjective())
 | |
|   VERIFY_RAISES_ASSERT(qr.isSurjective())
 | |
|   VERIFY_RAISES_ASSERT(qr.isInvertible())
 | |
|   VERIFY_RAISES_ASSERT(qr.inverse())
 | |
|   VERIFY_RAISES_ASSERT(qr.determinant())
 | |
|   VERIFY_RAISES_ASSERT(qr.absDeterminant())
 | |
|   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void cod_verify_assert() {
 | |
|   MatrixType tmp;
 | |
| 
 | |
|   CompleteOrthogonalDecomposition<MatrixType> cod;
 | |
|   VERIFY_RAISES_ASSERT(cod.matrixQTZ())
 | |
|   VERIFY_RAISES_ASSERT(cod.solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(cod.transpose().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(cod.adjoint().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(cod.householderQ())
 | |
|   VERIFY_RAISES_ASSERT(cod.dimensionOfKernel())
 | |
|   VERIFY_RAISES_ASSERT(cod.isInjective())
 | |
|   VERIFY_RAISES_ASSERT(cod.isSurjective())
 | |
|   VERIFY_RAISES_ASSERT(cod.isInvertible())
 | |
|   VERIFY_RAISES_ASSERT(cod.pseudoInverse())
 | |
|   VERIFY_RAISES_ASSERT(cod.determinant())
 | |
|   VERIFY_RAISES_ASSERT(cod.absDeterminant())
 | |
|   VERIFY_RAISES_ASSERT(cod.logAbsDeterminant())
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(qr_colpivoting) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(qr<MatrixXf>());
 | |
|     CALL_SUBTEST_2(qr<MatrixXd>());
 | |
|     CALL_SUBTEST_3(qr<MatrixXcd>());
 | |
|     CALL_SUBTEST_4((qr_fixedsize<Matrix<float, 3, 5>, 4>()));
 | |
|     CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 6, 2>, 3>()));
 | |
|     CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 1, 1>, 1>()));
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(cod<MatrixXf>());
 | |
|     CALL_SUBTEST_2(cod<MatrixXd>());
 | |
|     CALL_SUBTEST_3(cod<MatrixXcd>());
 | |
|     CALL_SUBTEST_4((cod_fixedsize<Matrix<float, 3, 5>, 4>()));
 | |
|     CALL_SUBTEST_5((cod_fixedsize<Matrix<double, 6, 2>, 3>()));
 | |
|     CALL_SUBTEST_5((cod_fixedsize<Matrix<double, 1, 1>, 1>()));
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(qr_invertible<MatrixXf>());
 | |
|     CALL_SUBTEST_2(qr_invertible<MatrixXd>());
 | |
|     CALL_SUBTEST_6(qr_invertible<MatrixXcf>());
 | |
|     CALL_SUBTEST_3(qr_invertible<MatrixXcd>());
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
 | |
|   CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
 | |
|   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
 | |
|   CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
 | |
|   CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
 | |
|   CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
 | |
| 
 | |
|   CALL_SUBTEST_7(cod_verify_assert<Matrix3f>());
 | |
|   CALL_SUBTEST_8(cod_verify_assert<Matrix3d>());
 | |
|   CALL_SUBTEST_1(cod_verify_assert<MatrixXf>());
 | |
|   CALL_SUBTEST_2(cod_verify_assert<MatrixXd>());
 | |
|   CALL_SUBTEST_6(cod_verify_assert<MatrixXcf>());
 | |
|   CALL_SUBTEST_3(cod_verify_assert<MatrixXcd>());
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
 | |
| 
 | |
|   CALL_SUBTEST_1(qr_kahan_matrix<MatrixXf>());
 | |
|   CALL_SUBTEST_2(qr_kahan_matrix<MatrixXd>());
 | |
| }
 | 
