127 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2021 Kolja Brix <kolja.brix@rwth-aachen.de>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/SVD>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void check_generateRandomUnitaryMatrix(const Index dim) {
 | |
|   const MatrixType Q = generateRandomUnitaryMatrix<MatrixType>(dim);
 | |
| 
 | |
|   // validate dimensions
 | |
|   VERIFY_IS_EQUAL(Q.rows(), dim);
 | |
|   VERIFY_IS_EQUAL(Q.cols(), dim);
 | |
| 
 | |
|   VERIFY_IS_UNITARY(Q);
 | |
| }
 | |
| 
 | |
| template <typename VectorType, typename RealScalarType>
 | |
| void check_setupRandomSvs(const Index dim, const RealScalarType max) {
 | |
|   const VectorType v = setupRandomSvs<VectorType, RealScalarType>(dim, max);
 | |
| 
 | |
|   // validate dimensions
 | |
|   VERIFY_IS_EQUAL(v.size(), dim);
 | |
| 
 | |
|   // check entries
 | |
|   for (Index i = 0; i < v.size(); ++i) VERIFY_GE(v(i), 0);
 | |
|   for (Index i = 0; i < v.size() - 1; ++i) VERIFY_GE(v(i), v(i + 1));
 | |
| }
 | |
| 
 | |
| template <typename VectorType, typename RealScalarType>
 | |
| void check_setupRangeSvs(const Index dim, const RealScalarType min, const RealScalarType max) {
 | |
|   const VectorType v = setupRangeSvs<VectorType, RealScalarType>(dim, min, max);
 | |
| 
 | |
|   // validate dimensions
 | |
|   VERIFY_IS_EQUAL(v.size(), dim);
 | |
| 
 | |
|   // check entries
 | |
|   if (dim == 1) {
 | |
|     VERIFY_IS_APPROX(v(0), min);
 | |
|   } else {
 | |
|     VERIFY_IS_APPROX(v(0), max);
 | |
|     VERIFY_IS_APPROX(v(dim - 1), min);
 | |
|   }
 | |
|   for (Index i = 0; i < v.size() - 1; ++i) VERIFY_GE(v(i), v(i + 1));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, typename RealScalar, typename RealVectorType>
 | |
| void check_generateRandomMatrixSvs(const Index rows, const Index cols, const Index diag_size, const RealScalar min_svs,
 | |
|                                    const RealScalar max_svs) {
 | |
|   RealVectorType svs = setupRangeSvs<RealVectorType, RealScalar>(diag_size, min_svs, max_svs);
 | |
| 
 | |
|   MatrixType M = MatrixType::Zero(rows, cols);
 | |
|   generateRandomMatrixSvs(svs, rows, cols, M);
 | |
| 
 | |
|   // validate dimensions
 | |
|   VERIFY_IS_EQUAL(M.rows(), rows);
 | |
|   VERIFY_IS_EQUAL(M.cols(), cols);
 | |
|   VERIFY_IS_EQUAL(svs.size(), diag_size);
 | |
| 
 | |
|   // validate singular values
 | |
|   Eigen::JacobiSVD<MatrixType> SVD(M);
 | |
|   VERIFY_IS_APPROX(svs, SVD.singularValues());
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void check_random_matrix(const MatrixType &m) {
 | |
|   enum {
 | |
|     Rows = MatrixType::RowsAtCompileTime,
 | |
|     Cols = MatrixType::ColsAtCompileTime,
 | |
|     DiagSize = internal::min_size_prefer_dynamic(Rows, Cols)
 | |
|   };
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef Matrix<RealScalar, DiagSize, 1> RealVectorType;
 | |
| 
 | |
|   const Index rows = m.rows(), cols = m.cols();
 | |
|   const Index diag_size = (std::min)(rows, cols);
 | |
|   const RealScalar min_svs = 1.0, max_svs = 1000.0;
 | |
| 
 | |
|   // check generation of unitary random matrices
 | |
|   typedef Matrix<Scalar, Rows, Rows> MatrixAType;
 | |
|   typedef Matrix<Scalar, Cols, Cols> MatrixBType;
 | |
|   check_generateRandomUnitaryMatrix<MatrixAType>(rows);
 | |
|   check_generateRandomUnitaryMatrix<MatrixBType>(cols);
 | |
| 
 | |
|   // test generators for singular values
 | |
|   check_setupRandomSvs<RealVectorType, RealScalar>(diag_size, max_svs);
 | |
|   check_setupRangeSvs<RealVectorType, RealScalar>(diag_size, min_svs, max_svs);
 | |
| 
 | |
|   // check generation of random matrices
 | |
|   check_generateRandomMatrixSvs<MatrixType, RealScalar, RealVectorType>(rows, cols, diag_size, min_svs, max_svs);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(random_matrix) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(check_random_matrix(Matrix<float, 1, 1>()));
 | |
|     CALL_SUBTEST_2(check_random_matrix(Matrix<float, 4, 4>()));
 | |
|     CALL_SUBTEST_3(check_random_matrix(Matrix<float, 2, 3>()));
 | |
|     CALL_SUBTEST_4(check_random_matrix(Matrix<float, 7, 4>()));
 | |
| 
 | |
|     CALL_SUBTEST_5(check_random_matrix(Matrix<double, 1, 1>()));
 | |
|     CALL_SUBTEST_6(check_random_matrix(Matrix<double, 6, 6>()));
 | |
|     CALL_SUBTEST_7(check_random_matrix(Matrix<double, 5, 3>()));
 | |
|     CALL_SUBTEST_8(check_random_matrix(Matrix<double, 4, 9>()));
 | |
| 
 | |
|     CALL_SUBTEST_9(check_random_matrix(Matrix<std::complex<float>, 12, 12>()));
 | |
|     CALL_SUBTEST_10(check_random_matrix(Matrix<std::complex<float>, 7, 14>()));
 | |
|     CALL_SUBTEST_11(check_random_matrix(Matrix<std::complex<double>, 15, 11>()));
 | |
|     CALL_SUBTEST_12(check_random_matrix(Matrix<std::complex<double>, 6, 9>()));
 | |
| 
 | |
|     CALL_SUBTEST_13(check_random_matrix(
 | |
|         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_14(check_random_matrix(
 | |
|         MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_15(check_random_matrix(
 | |
|         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_16(check_random_matrix(
 | |
|         MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   }
 | |
| }
 | 
