95 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #define EIGEN_RUNTIME_NO_MALLOC
 | |
| #include "main.h"
 | |
| #include <limits>
 | |
| #include <Eigen/Eigenvalues>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void real_qz(const MatrixType& m) {
 | |
|   /* this test covers the following files:
 | |
|      RealQZ.h
 | |
|   */
 | |
|   using std::abs;
 | |
| 
 | |
|   Index dim = m.cols();
 | |
| 
 | |
|   MatrixType A = MatrixType::Random(dim, dim), B = MatrixType::Random(dim, dim);
 | |
| 
 | |
|   // Regression test for bug 985: Randomly set rows or columns to zero
 | |
|   Index k = internal::random<Index>(0, dim - 1);
 | |
|   switch (internal::random<int>(0, 10)) {
 | |
|     case 0:
 | |
|       A.row(k).setZero();
 | |
|       break;
 | |
|     case 1:
 | |
|       A.col(k).setZero();
 | |
|       break;
 | |
|     case 2:
 | |
|       B.row(k).setZero();
 | |
|       break;
 | |
|     case 3:
 | |
|       B.col(k).setZero();
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   RealQZ<MatrixType> qz(dim);
 | |
|   // TODO enable full-prealocation of required memory, this probably requires an in-place mode for
 | |
|   // HessenbergDecomposition
 | |
|   // Eigen::internal::set_is_malloc_allowed(false);
 | |
|   qz.compute(A, B);
 | |
|   // Eigen::internal::set_is_malloc_allowed(true);
 | |
| 
 | |
|   VERIFY_IS_EQUAL(qz.info(), Success);
 | |
|   // check for zeros
 | |
|   bool all_zeros = true;
 | |
|   for (Index i = 0; i < A.cols(); i++)
 | |
|     for (Index j = 0; j < i; j++) {
 | |
|       if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j)))) {
 | |
|         std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i, j) << std::endl;
 | |
|         all_zeros = false;
 | |
|       }
 | |
|       if (j < i - 1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j)))) {
 | |
|         std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << std::endl;
 | |
|         all_zeros = false;
 | |
|       }
 | |
|       if (j == i - 1 && j > 0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) &&
 | |
|           !numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1)))) {
 | |
|         std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << " && S(" << i - 1 << "," << j - 1
 | |
|                   << ") = " << qz.matrixS()(i - 1, j - 1) << std::endl;
 | |
|         all_zeros = false;
 | |
|       }
 | |
|     }
 | |
|   VERIFY_IS_EQUAL(all_zeros, true);
 | |
|   VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A);
 | |
|   VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B);
 | |
|   VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim));
 | |
|   VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim));
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(real_qz) {
 | |
|   int s = 0;
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(real_qz(Matrix4f()));
 | |
|     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
 | |
|     CALL_SUBTEST_2(real_qz(MatrixXd(s, s)));
 | |
| 
 | |
|     // some trivial but implementation-wise tricky cases
 | |
|     CALL_SUBTEST_2(real_qz(MatrixXd(1, 1)));
 | |
|     CALL_SUBTEST_2(real_qz(MatrixXd(2, 2)));
 | |
|     CALL_SUBTEST_3(real_qz(Matrix<double, 1, 1>()));
 | |
|     CALL_SUBTEST_4(real_qz(Matrix2d()));
 | |
|   }
 | |
| 
 | |
|   TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| }
 | 
