91 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <limits>
 | |
| #include <Eigen/Eigenvalues>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void schur(int size = MatrixType::ColsAtCompileTime) {
 | |
|   typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
 | |
|   typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
 | |
| 
 | |
|   // Test basic functionality: T is triangular and A = U T U*
 | |
|   for (int counter = 0; counter < g_repeat; ++counter) {
 | |
|     MatrixType A = MatrixType::Random(size, size);
 | |
|     ComplexSchur<MatrixType> schurOfA(A);
 | |
|     VERIFY_IS_EQUAL(schurOfA.info(), Success);
 | |
|     ComplexMatrixType U = schurOfA.matrixU();
 | |
|     ComplexMatrixType T = schurOfA.matrixT();
 | |
|     for (int row = 1; row < size; ++row) {
 | |
|       for (int col = 0; col < row; ++col) {
 | |
|         VERIFY(T(row, col) == (typename MatrixType::Scalar)0);
 | |
|       }
 | |
|     }
 | |
|     VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
 | |
|   }
 | |
| 
 | |
|   // Test asserts when not initialized
 | |
|   ComplexSchur<MatrixType> csUninitialized;
 | |
|   VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
 | |
|   VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
 | |
|   VERIFY_RAISES_ASSERT(csUninitialized.info());
 | |
| 
 | |
|   // Test whether compute() and constructor returns same result
 | |
|   MatrixType A = MatrixType::Random(size, size);
 | |
|   ComplexSchur<MatrixType> cs1;
 | |
|   cs1.compute(A);
 | |
|   ComplexSchur<MatrixType> cs2(A);
 | |
|   VERIFY_IS_EQUAL(cs1.info(), Success);
 | |
|   VERIFY_IS_EQUAL(cs2.info(), Success);
 | |
|   VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
 | |
|   VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
 | |
| 
 | |
|   // Test maximum number of iterations
 | |
|   ComplexSchur<MatrixType> cs3;
 | |
|   cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
 | |
|   VERIFY_IS_EQUAL(cs3.info(), Success);
 | |
|   VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
 | |
|   VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
 | |
|   cs3.setMaxIterations(1).compute(A);
 | |
|   // The schur decomposition does often converge with a single iteration.
 | |
|   // VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
 | |
|   VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
 | |
| 
 | |
|   MatrixType Atriangular = A;
 | |
|   Atriangular.template triangularView<StrictlyLower>().setZero();
 | |
|   cs3.setMaxIterations(1).compute(Atriangular);  // triangular matrices do not need any iterations
 | |
|   VERIFY_IS_EQUAL(cs3.info(), Success);
 | |
|   VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
 | |
|   VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
 | |
| 
 | |
|   // Test computation of only T, not U
 | |
|   ComplexSchur<MatrixType> csOnlyT(A, false);
 | |
|   VERIFY_IS_EQUAL(csOnlyT.info(), Success);
 | |
|   VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
 | |
|   VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
 | |
| 
 | |
|   if (size > 1 && size < 20) {
 | |
|     // Test matrix with NaN
 | |
|     A(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
 | |
|     ComplexSchur<MatrixType> csNaN(A);
 | |
|     VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(schur_complex) {
 | |
|   CALL_SUBTEST_1((schur<Matrix4cd>()));
 | |
|   CALL_SUBTEST_2((schur<MatrixXcf>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4))));
 | |
|   CALL_SUBTEST_3((schur<Matrix<std::complex<float>, 1, 1> >()));
 | |
|   CALL_SUBTEST_4((schur<Matrix<float, 3, 3, Eigen::RowMajor> >()));
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
 | |
| }
 | 
