109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <limits>
 | |
| #include <Eigen/Eigenvalues>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void verifyIsQuasiTriangular(const MatrixType& T) {
 | |
|   const Index size = T.cols();
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   // Check T is lower Hessenberg
 | |
|   for (int row = 2; row < size; ++row) {
 | |
|     for (int col = 0; col < row - 1; ++col) {
 | |
|       VERIFY_IS_EQUAL(T(row, col), Scalar(0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that any non-zero on the subdiagonal is followed by a zero and is
 | |
|   // part of a 2x2 diagonal block with imaginary eigenvalues.
 | |
|   for (int row = 1; row < size; ++row) {
 | |
|     if (!numext::is_exactly_zero(T(row, row - 1))) {
 | |
|       VERIFY(row == size - 1 || numext::is_exactly_zero(T(row + 1, row)));
 | |
|       Scalar tr = T(row - 1, row - 1) + T(row, row);
 | |
|       Scalar det = T(row - 1, row - 1) * T(row, row) - T(row - 1, row) * T(row, row - 1);
 | |
|       VERIFY(4 * det > tr * tr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void schur(int size = MatrixType::ColsAtCompileTime) {
 | |
|   // Test basic functionality: T is quasi-triangular and A = U T U*
 | |
|   for (int counter = 0; counter < g_repeat; ++counter) {
 | |
|     MatrixType A = MatrixType::Random(size, size);
 | |
|     RealSchur<MatrixType> schurOfA(A);
 | |
|     VERIFY_IS_EQUAL(schurOfA.info(), Success);
 | |
|     MatrixType U = schurOfA.matrixU();
 | |
|     MatrixType T = schurOfA.matrixT();
 | |
|     verifyIsQuasiTriangular(T);
 | |
|     VERIFY_IS_APPROX(A, U * T * U.transpose());
 | |
|   }
 | |
| 
 | |
|   // Test asserts when not initialized
 | |
|   RealSchur<MatrixType> rsUninitialized;
 | |
|   VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
 | |
|   VERIFY_RAISES_ASSERT(rsUninitialized.matrixU());
 | |
|   VERIFY_RAISES_ASSERT(rsUninitialized.info());
 | |
| 
 | |
|   // Test whether compute() and constructor returns same result
 | |
|   MatrixType A = MatrixType::Random(size, size);
 | |
|   RealSchur<MatrixType> rs1;
 | |
|   rs1.compute(A);
 | |
|   RealSchur<MatrixType> rs2(A);
 | |
|   VERIFY_IS_EQUAL(rs1.info(), Success);
 | |
|   VERIFY_IS_EQUAL(rs2.info(), Success);
 | |
|   VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
 | |
|   VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
 | |
| 
 | |
|   // Test maximum number of iterations
 | |
|   RealSchur<MatrixType> rs3;
 | |
|   rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
 | |
|   VERIFY_IS_EQUAL(rs3.info(), Success);
 | |
|   VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
 | |
|   VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
 | |
|   if (size > 2) {
 | |
|     rs3.setMaxIterations(1).compute(A);
 | |
|     VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
 | |
|     VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1);
 | |
|   }
 | |
| 
 | |
|   MatrixType Atriangular = A;
 | |
|   Atriangular.template triangularView<StrictlyLower>().setZero();
 | |
|   rs3.setMaxIterations(1).compute(Atriangular);  // triangular matrices do not need any iterations
 | |
|   VERIFY_IS_EQUAL(rs3.info(), Success);
 | |
|   VERIFY_IS_APPROX(rs3.matrixT(), Atriangular);  // approx because of scaling...
 | |
|   VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
 | |
| 
 | |
|   // Test computation of only T, not U
 | |
|   RealSchur<MatrixType> rsOnlyT(A, false);
 | |
|   VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
 | |
|   VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
 | |
|   VERIFY_RAISES_ASSERT(rsOnlyT.matrixU());
 | |
| 
 | |
|   if (size > 2 && size < 20) {
 | |
|     // Test matrix with NaN
 | |
|     A(0, 0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN();
 | |
|     RealSchur<MatrixType> rsNaN(A);
 | |
|     VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence);
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(schur_real) {
 | |
|   CALL_SUBTEST_1((schur<Matrix4f>()));
 | |
|   CALL_SUBTEST_2((schur<MatrixXd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4))));
 | |
|   CALL_SUBTEST_3((schur<Matrix<float, 1, 1> >()));
 | |
|   CALL_SUBTEST_4((schur<Matrix<double, 3, 3, Eigen::RowMajor> >()));
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_5(RealSchur<MatrixXf>(10));
 | |
| }
 | 
