153 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
 | |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <iomanip>
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/LevenbergMarquardt>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace Eigen;
 | |
| 
 | |
| template <typename Scalar>
 | |
| struct sparseGaussianTest : SparseFunctor<Scalar, int> {
 | |
|   typedef Matrix<Scalar, Dynamic, 1> VectorType;
 | |
|   typedef SparseFunctor<Scalar, int> Base;
 | |
|   typedef typename Base::JacobianType JacobianType;
 | |
|   sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar, int>(inputs, values) {}
 | |
| 
 | |
|   VectorType model(const VectorType& uv, VectorType& x) {
 | |
|     VectorType y;  // Change this to use expression template
 | |
|     int m = Base::values();
 | |
|     int n = Base::inputs();
 | |
|     eigen_assert(uv.size() % 2 == 0);
 | |
|     eigen_assert(uv.size() == n);
 | |
|     eigen_assert(x.size() == m);
 | |
|     y.setZero(m);
 | |
|     int half = n / 2;
 | |
|     VectorBlock<const VectorType> u(uv, 0, half);
 | |
|     VectorBlock<const VectorType> v(uv, half, half);
 | |
|     Scalar coeff;
 | |
|     for (int j = 0; j < m; j++) {
 | |
|       for (int i = 0; i < half; i++) {
 | |
|         coeff = (x(j) - i) / v(i);
 | |
|         coeff *= coeff;
 | |
|         if (coeff < 1. && coeff > 0.) y(j) += u(i) * std::pow((1 - coeff), 2);
 | |
|       }
 | |
|     }
 | |
|     return y;
 | |
|   }
 | |
|   void initPoints(VectorType& uv_ref, VectorType& x) {
 | |
|     m_x = x;
 | |
|     m_y = this->model(uv_ref, x);
 | |
|   }
 | |
|   int operator()(const VectorType& uv, VectorType& fvec) {
 | |
|     int m = Base::values();
 | |
|     int n = Base::inputs();
 | |
|     eigen_assert(uv.size() % 2 == 0);
 | |
|     eigen_assert(uv.size() == n);
 | |
|     int half = n / 2;
 | |
|     VectorBlock<const VectorType> u(uv, 0, half);
 | |
|     VectorBlock<const VectorType> v(uv, half, half);
 | |
|     fvec = m_y;
 | |
|     Scalar coeff;
 | |
|     for (int j = 0; j < m; j++) {
 | |
|       for (int i = 0; i < half; i++) {
 | |
|         coeff = (m_x(j) - i) / v(i);
 | |
|         coeff *= coeff;
 | |
|         if (coeff < 1. && coeff > 0.) fvec(j) -= u(i) * std::pow((1 - coeff), 2);
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   int df(const VectorType& uv, JacobianType& fjac) {
 | |
|     int m = Base::values();
 | |
|     int n = Base::inputs();
 | |
|     eigen_assert(n == uv.size());
 | |
|     eigen_assert(fjac.rows() == m);
 | |
|     eigen_assert(fjac.cols() == n);
 | |
|     int half = n / 2;
 | |
|     VectorBlock<const VectorType> u(uv, 0, half);
 | |
|     VectorBlock<const VectorType> v(uv, half, half);
 | |
|     Scalar coeff;
 | |
| 
 | |
|     // Derivatives with respect to u
 | |
|     for (int col = 0; col < half; col++) {
 | |
|       for (int row = 0; row < m; row++) {
 | |
|         coeff = (m_x(row) - col) / v(col);
 | |
|         coeff = coeff * coeff;
 | |
|         if (coeff < 1. && coeff > 0.) {
 | |
|           fjac.coeffRef(row, col) = -(1 - coeff) * (1 - coeff);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Derivatives with respect to v
 | |
|     for (int col = 0; col < half; col++) {
 | |
|       for (int row = 0; row < m; row++) {
 | |
|         coeff = (m_x(row) - col) / v(col);
 | |
|         coeff = coeff * coeff;
 | |
|         if (coeff < 1. && coeff > 0.) {
 | |
|           fjac.coeffRef(row, col + half) = -4 * (u(col) / v(col)) * coeff * (1 - coeff);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   VectorType m_x, m_y;  // Data points
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| void test_sparseLM_T() {
 | |
|   typedef Matrix<T, Dynamic, 1> VectorType;
 | |
| 
 | |
|   int inputs = 10;
 | |
|   int values = 2000;
 | |
|   sparseGaussianTest<T> sparse_gaussian(inputs, values);
 | |
|   VectorType uv(inputs), uv_ref(inputs);
 | |
|   VectorType x(values);
 | |
|   // Generate the reference solution
 | |
|   uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3;
 | |
|   // Generate the reference data points
 | |
|   x.setRandom();
 | |
|   x = 10 * x;
 | |
|   x.array() += 10;
 | |
|   sparse_gaussian.initPoints(uv_ref, x);
 | |
| 
 | |
|   // Generate the initial parameters
 | |
|   VectorBlock<VectorType> u(uv, 0, inputs / 2);
 | |
|   VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2);
 | |
|   v.setOnes();
 | |
|   // Generate u or Solve for u from v
 | |
|   u.setOnes();
 | |
| 
 | |
|   // Solve the optimization problem
 | |
|   LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
 | |
|   int info;
 | |
|   //   info = lm.minimize(uv);
 | |
| 
 | |
|   VERIFY_IS_EQUAL(info, 1);
 | |
|   // Do a step by step solution and save the residual
 | |
|   int maxiter = 200;
 | |
|   int iter = 0;
 | |
|   MatrixXd Err(values, maxiter);
 | |
|   MatrixXd Mod(values, maxiter);
 | |
|   LevenbergMarquardtSpace::Status status;
 | |
|   status = lm.minimizeInit(uv);
 | |
|   if (status == LevenbergMarquardtSpace::ImproperInputParameters) return;
 | |
| }
 | |
| EIGEN_DECLARE_TEST(sparseLM) {
 | |
|   CALL_SUBTEST_1(test_sparseLM_T<double>());
 | |
| 
 | |
|   // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
 | |
| }
 | 
