315 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			315 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "sparse.h"
 | |
| #include "AnnoyingScalar.h"
 | |
| 
 | |
| template <typename T>
 | |
| std::enable_if_t<(T::Flags & RowMajorBit) == RowMajorBit, typename T::RowXpr> innervec(T& A, Index i) {
 | |
|   return A.row(i);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| std::enable_if_t<(T::Flags & RowMajorBit) == 0, typename T::ColXpr> innervec(T& A, Index i) {
 | |
|   return A.col(i);
 | |
| }
 | |
| 
 | |
| template <typename SparseMatrixType>
 | |
| void sparse_block(const SparseMatrixType& ref) {
 | |
|   const Index rows = ref.rows();
 | |
|   const Index cols = ref.cols();
 | |
|   const Index inner = ref.innerSize();
 | |
|   const Index outer = ref.outerSize();
 | |
| 
 | |
|   typedef typename SparseMatrixType::Scalar Scalar;
 | |
|   typedef typename SparseMatrixType::RealScalar RealScalar;
 | |
|   typedef typename SparseMatrixType::StorageIndex StorageIndex;
 | |
| 
 | |
|   double density = (std::max)(8. / (rows * cols), 0.01);
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, SparseMatrixType::IsRowMajor ? RowMajor : ColMajor> DenseMatrix;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
|   typedef Matrix<Scalar, 1, Dynamic> RowDenseVector;
 | |
|   typedef SparseVector<Scalar> SparseVectorType;
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
|   {
 | |
|     SparseMatrixType m(rows, cols);
 | |
|     DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
 | |
|     initSparse<Scalar>(density, refMat, m);
 | |
| 
 | |
|     VERIFY_IS_APPROX(m, refMat);
 | |
| 
 | |
|     // test InnerIterators and Block expressions
 | |
|     for (int t = 0; t < 10; ++t) {
 | |
|       Index j = internal::random<Index>(0, cols - 2);
 | |
|       Index i = internal::random<Index>(0, rows - 2);
 | |
|       Index w = internal::random<Index>(1, cols - j);
 | |
|       Index h = internal::random<Index>(1, rows - i);
 | |
| 
 | |
|       VERIFY_IS_APPROX(m.block(i, j, h, w), refMat.block(i, j, h, w));
 | |
|       for (Index c = 0; c < w; c++) {
 | |
|         VERIFY_IS_APPROX(m.block(i, j, h, w).col(c), refMat.block(i, j, h, w).col(c));
 | |
|         for (Index r = 0; r < h; r++) {
 | |
|           VERIFY_IS_APPROX(m.block(i, j, h, w).col(c).coeff(r), refMat.block(i, j, h, w).col(c).coeff(r));
 | |
|           VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c));
 | |
|         }
 | |
|       }
 | |
|       for (Index r = 0; r < h; r++) {
 | |
|         VERIFY_IS_APPROX(m.block(i, j, h, w).row(r), refMat.block(i, j, h, w).row(r));
 | |
|         for (Index c = 0; c < w; c++) {
 | |
|           VERIFY_IS_APPROX(m.block(i, j, h, w).row(r).coeff(c), refMat.block(i, j, h, w).row(r).coeff(c));
 | |
|           VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       VERIFY_IS_APPROX(m.middleCols(j, w), refMat.middleCols(j, w));
 | |
|       VERIFY_IS_APPROX(m.middleRows(i, h), refMat.middleRows(i, h));
 | |
|       for (Index r = 0; r < h; r++) {
 | |
|         VERIFY_IS_APPROX(m.middleCols(j, w).row(r), refMat.middleCols(j, w).row(r));
 | |
|         VERIFY_IS_APPROX(m.middleRows(i, h).row(r), refMat.middleRows(i, h).row(r));
 | |
|         for (Index c = 0; c < w; c++) {
 | |
|           VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
 | |
|           VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
 | |
| 
 | |
|           VERIFY_IS_APPROX(m.middleCols(j, w).coeff(r, c), refMat.middleCols(j, w).coeff(r, c));
 | |
|           VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c));
 | |
|           if (!numext::is_exactly_zero(m.middleCols(j, w).coeff(r, c))) {
 | |
|             VERIFY_IS_APPROX(m.middleCols(j, w).coeffRef(r, c), refMat.middleCols(j, w).coeff(r, c));
 | |
|           }
 | |
|           if (!numext::is_exactly_zero(m.middleRows(i, h).coeff(r, c))) {
 | |
|             VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       for (Index c = 0; c < w; c++) {
 | |
|         VERIFY_IS_APPROX(m.middleCols(j, w).col(c), refMat.middleCols(j, w).col(c));
 | |
|         VERIFY_IS_APPROX(m.middleRows(i, h).col(c), refMat.middleRows(i, h).col(c));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (Index c = 0; c < cols; c++) {
 | |
|       VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
 | |
|       VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
 | |
|     }
 | |
| 
 | |
|     for (Index r = 0; r < rows; r++) {
 | |
|       VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
 | |
|       VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // test innerVector()
 | |
|   {
 | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
 | |
|     SparseMatrixType m2(rows, cols);
 | |
|     initSparse<Scalar>(density, refMat2, m2);
 | |
|     Index j0 = internal::random<Index>(0, outer - 1);
 | |
|     Index j1 = internal::random<Index>(0, outer - 1);
 | |
|     Index r0 = internal::random<Index>(0, rows - 1);
 | |
|     Index c0 = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|     VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2, j0));
 | |
|     VERIFY_IS_APPROX(m2.innerVector(j0) + m2.innerVector(j1), innervec(refMat2, j0) + innervec(refMat2, j1));
 | |
| 
 | |
|     m2.innerVector(j0) *= Scalar(2);
 | |
|     innervec(refMat2, j0) *= Scalar(2);
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
| 
 | |
|     m2.row(r0) *= Scalar(3);
 | |
|     refMat2.row(r0) *= Scalar(3);
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
| 
 | |
|     m2.col(c0) *= Scalar(4);
 | |
|     refMat2.col(c0) *= Scalar(4);
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
| 
 | |
|     m2.row(r0) /= Scalar(3);
 | |
|     refMat2.row(r0) /= Scalar(3);
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
| 
 | |
|     m2.col(c0) /= Scalar(4);
 | |
|     refMat2.col(c0) /= Scalar(4);
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
| 
 | |
|     SparseVectorType v1;
 | |
|     VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0) * 4);
 | |
|     VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose() * 4);
 | |
| 
 | |
|     SparseMatrixType m3(rows, cols);
 | |
|     m3.reserve(VectorXi::Constant(outer, int(inner / 2)));
 | |
|     for (Index j = 0; j < outer; ++j)
 | |
|       for (Index k = 0; k < (std::min)(j, inner); ++k)
 | |
|         m3.insertByOuterInner(j, k) = internal::convert_index<StorageIndex>(k + 1);
 | |
|     for (Index j = 0; j < (std::min)(outer, inner); ++j) {
 | |
|       VERIFY(j == numext::real(m3.innerVector(j).nonZeros()));
 | |
|       if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff()));
 | |
|     }
 | |
|     m3.makeCompressed();
 | |
|     for (Index j = 0; j < (std::min)(outer, inner); ++j) {
 | |
|       VERIFY(j == numext::real(m3.innerVector(j).nonZeros()));
 | |
|       if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff()));
 | |
|     }
 | |
| 
 | |
|     VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
 | |
| 
 | |
|     //     m2.innerVector(j0) = 2*m2.innerVector(j1);
 | |
|     //     refMat2.col(j0) = 2*refMat2.col(j1);
 | |
|     //     VERIFY_IS_APPROX(m2, refMat2);
 | |
|   }
 | |
| 
 | |
|   // test innerVectors()
 | |
|   {
 | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
 | |
|     SparseMatrixType m2(rows, cols);
 | |
|     initSparse<Scalar>(density, refMat2, m2);
 | |
|     if (internal::random<float>(0, 1) > 0.5f) m2.makeCompressed();
 | |
|     Index j0 = internal::random<Index>(0, outer - 2);
 | |
|     Index j1 = internal::random<Index>(0, outer - 2);
 | |
|     Index n0 = internal::random<Index>(1, outer - (std::max)(j0, j1));
 | |
|     if (SparseMatrixType::IsRowMajor)
 | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(j0, 0, n0, cols));
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(0, j0, rows, n0));
 | |
|     if (SparseMatrixType::IsRowMajor)
 | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0),
 | |
|                        refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0));
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0),
 | |
|                        refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0));
 | |
| 
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
| 
 | |
|     VERIFY(m2.innerVectors(j0, n0).nonZeros() == m2.transpose().innerVectors(j0, n0).nonZeros());
 | |
| 
 | |
|     m2.innerVectors(j0, n0) = m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0);
 | |
|     if (SparseMatrixType::IsRowMajor)
 | |
|       refMat2.middleRows(j0, n0) = (refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0)).eval();
 | |
|     else
 | |
|       refMat2.middleCols(j0, n0) = (refMat2.middleCols(j0, n0) + refMat2.middleCols(j1, n0)).eval();
 | |
| 
 | |
|     VERIFY_IS_APPROX(m2, refMat2);
 | |
|   }
 | |
| 
 | |
|   // test generic blocks
 | |
|   {
 | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
 | |
|     SparseMatrixType m2(rows, cols);
 | |
|     initSparse<Scalar>(density, refMat2, m2);
 | |
|     Index j0 = internal::random<Index>(0, outer - 2);
 | |
|     Index j1 = internal::random<Index>(0, outer - 2);
 | |
|     Index n0 = internal::random<Index>(1, outer - (std::max)(j0, j1));
 | |
|     if (SparseMatrixType::IsRowMajor)
 | |
|       VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols), refMat2.block(j0, 0, n0, cols));
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m2.block(0, j0, rows, n0), refMat2.block(0, j0, rows, n0));
 | |
| 
 | |
|     if (SparseMatrixType::IsRowMajor)
 | |
|       VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols) + m2.block(j1, 0, n0, cols),
 | |
|                        refMat2.block(j0, 0, n0, cols) + refMat2.block(j1, 0, n0, cols));
 | |
|     else
 | |
|       VERIFY_IS_APPROX(m2.block(0, j0, rows, n0) + m2.block(0, j1, rows, n0),
 | |
|                        refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0));
 | |
| 
 | |
|     Index i = internal::random<Index>(0, m2.outerSize() - 1);
 | |
|     if (SparseMatrixType::IsRowMajor) {
 | |
|       m2.innerVector(i) = m2.innerVector(i) * s1;
 | |
|       refMat2.row(i) = refMat2.row(i) * s1;
 | |
|       VERIFY_IS_APPROX(m2, refMat2);
 | |
|     } else {
 | |
|       m2.innerVector(i) = m2.innerVector(i) * s1;
 | |
|       refMat2.col(i) = refMat2.col(i) * s1;
 | |
|       VERIFY_IS_APPROX(m2, refMat2);
 | |
|     }
 | |
| 
 | |
|     Index r0 = internal::random<Index>(0, rows - 2);
 | |
|     Index c0 = internal::random<Index>(0, cols - 2);
 | |
|     Index r1 = internal::random<Index>(1, rows - r0);
 | |
|     Index c1 = internal::random<Index>(1, cols - c0);
 | |
| 
 | |
|     VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
 | |
|     VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
 | |
| 
 | |
|     VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
 | |
|     VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));
 | |
| 
 | |
|     VERIFY_IS_APPROX(m2.block(r0, c0, r1, c1), refMat2.block(r0, c0, r1, c1));
 | |
|     VERIFY_IS_APPROX((2 * m2).block(r0, c0, r1, c1), (2 * refMat2).block(r0, c0, r1, c1));
 | |
| 
 | |
|     if (m2.nonZeros() > 0) {
 | |
|       VERIFY_IS_APPROX(m2, refMat2);
 | |
|       SparseMatrixType m3(rows, cols);
 | |
|       DenseMatrix refMat3(rows, cols);
 | |
|       refMat3.setZero();
 | |
|       Index n = internal::random<Index>(1, 10);
 | |
|       for (Index k = 0; k < n; ++k) {
 | |
|         Index o1 = internal::random<Index>(0, outer - 1);
 | |
|         Index o2 = internal::random<Index>(0, outer - 1);
 | |
|         if (SparseMatrixType::IsRowMajor) {
 | |
|           m3.innerVector(o1) = m2.row(o2);
 | |
|           refMat3.row(o1) = refMat2.row(o2);
 | |
|         } else {
 | |
|           m3.innerVector(o1) = m2.col(o2);
 | |
|           refMat3.col(o1) = refMat2.col(o2);
 | |
|         }
 | |
|         if (internal::random<bool>()) m3.makeCompressed();
 | |
|       }
 | |
|       if (m3.nonZeros() > 0) VERIFY_IS_APPROX(m3, refMat3);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Explicit inner iterator.
 | |
|   {
 | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
 | |
|     SparseMatrixType m2(rows, cols);
 | |
|     initSparse<Scalar>(density, refMat2, m2);
 | |
| 
 | |
|     Index j0 = internal::random<Index>(0, outer - 1);
 | |
|     auto v = innervec(m2, j0);
 | |
| 
 | |
|     typename decltype(v)::InnerIterator block_iterator(v);
 | |
|     typename SparseMatrixType::InnerIterator matrix_iterator(m2, j0);
 | |
|     while (block_iterator) {
 | |
|       VERIFY_IS_EQUAL(block_iterator.index(), matrix_iterator.index());
 | |
|       ++block_iterator;
 | |
|       ++matrix_iterator;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(sparse_block) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     int r = Eigen::internal::random<int>(1, 200), c = Eigen::internal::random<int>(1, 200);
 | |
|     if (Eigen::internal::random<int>(0, 4) == 0) {
 | |
|       r = c;  // check square matrices in 25% of tries
 | |
|     }
 | |
|     EIGEN_UNUSED_VARIABLE(r + c);
 | |
|     CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(1, 1))));
 | |
|     CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(8, 8))));
 | |
|     CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(r, c))));
 | |
|     CALL_SUBTEST_2((sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c))));
 | |
|     CALL_SUBTEST_2((sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c))));
 | |
| 
 | |
|     CALL_SUBTEST_3((sparse_block(SparseMatrix<double, ColMajor, long int>(r, c))));
 | |
|     CALL_SUBTEST_3((sparse_block(SparseMatrix<double, RowMajor, long int>(r, c))));
 | |
| 
 | |
|     r = Eigen::internal::random<int>(1, 100);
 | |
|     c = Eigen::internal::random<int>(1, 100);
 | |
|     if (Eigen::internal::random<int>(0, 4) == 0) {
 | |
|       r = c;  // check square matrices in 25% of tries
 | |
|     }
 | |
| 
 | |
|     CALL_SUBTEST_4((sparse_block(SparseMatrix<double, ColMajor, short int>(short(r), short(c)))));
 | |
|     CALL_SUBTEST_4((sparse_block(SparseMatrix<double, RowMajor, short int>(short(r), short(c)))));
 | |
| #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW
 | |
|     AnnoyingScalar::dont_throw = true;
 | |
| #endif
 | |
|     CALL_SUBTEST_5((sparse_block(SparseMatrix<AnnoyingScalar>(r, c))));
 | |
|   }
 | |
| }
 | 
