553 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			553 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #if defined(_MSC_VER) && (_MSC_VER == 1800)
 | |
| // This unit test takes forever to compile in Release mode with MSVC 2013,
 | |
| // multiple hours. So let's switch off optimization for this one.
 | |
| #pragma optimize("", off)
 | |
| #endif
 | |
| 
 | |
| static long int nb_temporaries;
 | |
| 
 | |
| inline void on_temporary_creation() {
 | |
|   // here's a great place to set a breakpoint when debugging failures in this test!
 | |
|   nb_temporaries++;
 | |
| }
 | |
| 
 | |
| #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \
 | |
|   { on_temporary_creation(); }
 | |
| 
 | |
| #include "sparse.h"
 | |
| 
 | |
| #define VERIFY_EVALUATION_COUNT(XPR, N)                                                   \
 | |
|   {                                                                                       \
 | |
|     nb_temporaries = 0;                                                                   \
 | |
|     CALL_SUBTEST(XPR);                                                                    \
 | |
|     if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
 | |
|     VERIFY((#XPR) && nb_temporaries == N);                                                \
 | |
|   }
 | |
| 
 | |
| template <typename SparseMatrixType>
 | |
| void sparse_product() {
 | |
|   typedef typename SparseMatrixType::StorageIndex StorageIndex;
 | |
|   Index n = 100;
 | |
|   const Index rows = internal::random<Index>(1, n);
 | |
|   const Index cols = internal::random<Index>(1, n);
 | |
|   const Index depth = internal::random<Index>(1, n);
 | |
|   typedef typename SparseMatrixType::Scalar Scalar;
 | |
|   enum { Flags = SparseMatrixType::Flags };
 | |
| 
 | |
|   double density = (std::max)(8. / (rows * cols), 0.2);
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
|   typedef Matrix<Scalar, 1, Dynamic> RowDenseVector;
 | |
|   typedef SparseVector<Scalar, 0, StorageIndex> ColSpVector;
 | |
|   typedef SparseVector<Scalar, RowMajor, StorageIndex> RowSpVector;
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
|   Scalar s2 = internal::random<Scalar>();
 | |
| 
 | |
|   // test matrix-matrix product
 | |
|   {
 | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth);
 | |
|     DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
 | |
|     DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols);
 | |
|     DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
 | |
|     DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols);
 | |
|     DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
 | |
|     DenseMatrix refMat5 = DenseMatrix::Random(depth, cols);
 | |
|     DenseMatrix refMat6 = DenseMatrix::Random(rows, rows);
 | |
|     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
 | |
|     //     DenseVector dv1 = DenseVector::Random(rows);
 | |
|     SparseMatrixType m2(rows, depth);
 | |
|     SparseMatrixType m2t(depth, rows);
 | |
|     SparseMatrixType m3(depth, cols);
 | |
|     SparseMatrixType m3t(cols, depth);
 | |
|     SparseMatrixType m4(rows, cols);
 | |
|     SparseMatrixType m4t(cols, rows);
 | |
|     SparseMatrixType m6(rows, rows);
 | |
|     initSparse(density, refMat2, m2);
 | |
|     initSparse(density, refMat2t, m2t);
 | |
|     initSparse(density, refMat3, m3);
 | |
|     initSparse(density, refMat3t, m3t);
 | |
|     initSparse(density, refMat4, m4);
 | |
|     initSparse(density, refMat4t, m4t);
 | |
|     initSparse(density, refMat6, m6);
 | |
| 
 | |
|     //     int c = internal::random<int>(0,depth-1);
 | |
| 
 | |
|     // sparse * sparse
 | |
|     VERIFY_IS_APPROX(m4 = m2 * m3, refMat4 = refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(m4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(m4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(m4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
 | |
| 
 | |
|     VERIFY_IS_APPROX(m4 = m2 * m3 / s1, refMat4 = refMat2 * refMat3 / s1);
 | |
|     VERIFY_IS_APPROX(m4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1);
 | |
|     VERIFY_IS_APPROX(m4 = s2 * m2 * m3 * s1, refMat4 = s2 * refMat2 * refMat3 * s1);
 | |
|     VERIFY_IS_APPROX(m4 = (m2 + m2) * m3, refMat4 = (refMat2 + refMat2) * refMat3);
 | |
|     VERIFY_IS_APPROX(m4 = m2 * m3.leftCols(cols / 2), refMat4 = refMat2 * refMat3.leftCols(cols / 2));
 | |
|     VERIFY_IS_APPROX(m4 = m2 * (m3 + m3).leftCols(cols / 2),
 | |
|                      refMat4 = refMat2 * (refMat3 + refMat3).leftCols(cols / 2));
 | |
| 
 | |
|     VERIFY_IS_APPROX(m4 = (m2 * m3).pruned(0), refMat4 = refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3).pruned(0), refMat4 = refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3t.transpose()).pruned(0),
 | |
|                      refMat4 = refMat2t.transpose() * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(m4 = (m2 * m3t.transpose()).pruned(0), refMat4 = refMat2 * refMat3t.transpose());
 | |
| 
 | |
| #ifndef EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT
 | |
|     // make sure the right product implementation is called:
 | |
|     if ((!SparseMatrixType::IsRowMajor) && m2.rows() <= m3.cols()) {
 | |
|       VERIFY_EVALUATION_COUNT(m4 = m2 * m3, 2);  // 2 for transposing and get a sorted result.
 | |
|       VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).pruned(0), 1);
 | |
|       VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).eval().pruned(0), 4);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // and that pruning is effective:
 | |
|     {
 | |
|       DenseMatrix Ad(2, 2);
 | |
|       Ad << -1, 1, 1, 1;
 | |
|       SparseMatrixType As(Ad.sparseView()), B(2, 2);
 | |
|       VERIFY_IS_EQUAL((As * As.transpose()).eval().nonZeros(), 4);
 | |
|       VERIFY_IS_EQUAL((Ad * Ad.transpose()).eval().sparseView().eval().nonZeros(), 2);
 | |
|       VERIFY_IS_EQUAL((As * As.transpose()).pruned(1e-6).eval().nonZeros(), 2);
 | |
|     }
 | |
| 
 | |
|     // dense ?= sparse * sparse
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * m3, refMat4 = refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 += m2 * m3, refMat4 += refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 -= m2 * m3, refMat4 -= refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3, refMat4 += refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3, refMat4 -= refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3t.transpose(), refMat4 += refMat2t.transpose() * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3t.transpose(), refMat4 -= refMat2t.transpose() * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 += m2 * m3t.transpose(), refMat4 += refMat2 * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 -= m2 * m3t.transpose(), refMat4 -= refMat2 * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1);
 | |
| 
 | |
|     // test aliasing
 | |
|     m4 = m2;
 | |
|     refMat4 = refMat2;
 | |
|     VERIFY_IS_APPROX(m4 = m4 * m3, refMat4 = refMat4 * refMat3);
 | |
| 
 | |
|     // sparse * dense matrix
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * refMat3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3, refMat4 = refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3t.transpose(),
 | |
|                      refMat4 = refMat2t.transpose() * refMat3t.transpose());
 | |
| 
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = dm4 + m2 * refMat3, refMat4 = refMat4 + refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 += m2 * refMat3, refMat4 += refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 -= m2 * refMat3, refMat4 -= refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4.noalias() += m2 * refMat3, refMat4 += refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4.noalias() -= m2 * refMat3, refMat4 -= refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = m2 * (refMat3 + refMat3), refMat4 = refMat2 * (refMat3 + refMat3));
 | |
|     VERIFY_IS_APPROX(dm4 = m2t.transpose() * (refMat3 + refMat5) * 0.5,
 | |
|                      refMat4 = refMat2t.transpose() * (refMat3 + refMat5) * 0.5);
 | |
| 
 | |
|     // sparse * dense vector
 | |
|     VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3.col(0), refMat4.col(0) = refMat2 * refMat3.col(0));
 | |
|     VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3t.transpose().col(0),
 | |
|                      refMat4.col(0) = refMat2 * refMat3t.transpose().col(0));
 | |
|     VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3.col(0),
 | |
|                      refMat4.col(0) = refMat2t.transpose() * refMat3.col(0));
 | |
|     VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3t.transpose().col(0),
 | |
|                      refMat4.col(0) = refMat2t.transpose() * refMat3t.transpose().col(0));
 | |
| 
 | |
|     // dense * sparse
 | |
|     VERIFY_IS_APPROX(dm4 = refMat2 * m3, refMat4 = refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = dm4 + refMat2 * m3, refMat4 = refMat4 + refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 += refMat2 * m3, refMat4 += refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 -= refMat2 * m3, refMat4 -= refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4.noalias() += refMat2 * m3, refMat4 += refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4.noalias() -= refMat2 * m3, refMat4 -= refMat2 * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = refMat2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
 | |
|     VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3);
 | |
|     VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3t.transpose(),
 | |
|                      refMat4 = refMat2t.transpose() * refMat3t.transpose());
 | |
| 
 | |
|     // sparse * dense and dense * sparse outer product
 | |
|     {
 | |
|       Index c = internal::random<Index>(0, depth - 1);
 | |
|       Index r = internal::random<Index>(0, rows - 1);
 | |
|       Index c1 = internal::random<Index>(0, cols - 1);
 | |
|       Index r1 = internal::random<Index>(0, depth - 1);
 | |
|       DenseMatrix dm5 = DenseMatrix::Random(depth, cols);
 | |
| 
 | |
|       VERIFY_IS_APPROX(m4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(m4 = m2.middleCols(c, 1) * dm5.col(c1).transpose(),
 | |
|                        refMat4 = refMat2.col(c) * dm5.col(c1).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(dm4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose());
 | |
| 
 | |
|       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleCols(c, 1).transpose(),
 | |
|                        refMat4 = dm5.col(c1) * refMat2.col(c).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose());
 | |
| 
 | |
|       VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.col(c).transpose(),
 | |
|                        refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.col(c).transpose(),
 | |
|                        refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose());
 | |
| 
 | |
|       VERIFY_IS_APPROX(m4 = m2.row(r).transpose() * dm5.col(c1).transpose(),
 | |
|                        refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(m4 = m2.middleRows(r, 1).transpose() * dm5.col(c1).transpose(),
 | |
|                        refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose());
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(dm4 = m2.row(r).transpose() * dm5.col(c1).transpose(),
 | |
|                        refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose());
 | |
| 
 | |
|       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r));
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleRows(r, 1), refMat4 = dm5.col(c1) * refMat2.row(r));
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r));
 | |
| 
 | |
|       VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r));
 | |
|       VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
 | |
|       VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r));
 | |
|     }
 | |
| 
 | |
|     VERIFY_IS_APPROX(m6 = m6 * m6, refMat6 = refMat6 * refMat6);
 | |
| 
 | |
|     // sparse matrix * sparse vector
 | |
|     ColSpVector cv0(cols), cv1;
 | |
|     DenseVector dcv0(cols), dcv1;
 | |
|     initSparse(2 * density, dcv0, cv0);
 | |
| 
 | |
|     RowSpVector rv0(depth), rv1;
 | |
|     RowDenseVector drv0(depth), drv1(rv1);
 | |
|     initSparse(2 * density, drv0, rv0);
 | |
| 
 | |
|     VERIFY_IS_APPROX(cv1 = m3 * cv0, dcv1 = refMat3 * dcv0);
 | |
|     VERIFY_IS_APPROX(rv1 = rv0 * m3, drv1 = drv0 * refMat3);
 | |
|     VERIFY_IS_APPROX(cv1 = m3t.adjoint() * cv0, dcv1 = refMat3t.adjoint() * dcv0);
 | |
|     VERIFY_IS_APPROX(cv1 = rv0 * m3, dcv1 = drv0 * refMat3);
 | |
|     VERIFY_IS_APPROX(rv1 = m3 * cv0, drv1 = refMat3 * dcv0);
 | |
|   }
 | |
| 
 | |
|   // test matrix - diagonal product
 | |
|   {
 | |
|     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
 | |
|     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
 | |
|     DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
 | |
|     DiagonalMatrix<Scalar, Dynamic> d1(DenseVector::Random(cols));
 | |
|     DiagonalMatrix<Scalar, Dynamic> d2(DenseVector::Random(rows));
 | |
|     SparseMatrixType m2(rows, cols);
 | |
|     SparseMatrixType m3(rows, cols);
 | |
|     initSparse<Scalar>(density, refM2, m2);
 | |
|     initSparse<Scalar>(density, refM3, m3);
 | |
|     VERIFY_IS_APPROX(m3 = m2 * d1, refM3 = refM2 * d1);
 | |
|     VERIFY_IS_APPROX(m3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2);
 | |
|     VERIFY_IS_APPROX(m3 = d2 * m2, refM3 = d2 * refM2);
 | |
|     VERIFY_IS_APPROX(m3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose());
 | |
| 
 | |
|     // also check with a SparseWrapper:
 | |
|     DenseVector v1 = DenseVector::Random(cols);
 | |
|     DenseVector v2 = DenseVector::Random(rows);
 | |
|     DenseVector v3 = DenseVector::Random(rows);
 | |
|     VERIFY_IS_APPROX(m3 = m2 * v1.asDiagonal(), refM3 = refM2 * v1.asDiagonal());
 | |
|     VERIFY_IS_APPROX(m3 = m2.transpose() * v2.asDiagonal(), refM3 = refM2.transpose() * v2.asDiagonal());
 | |
|     VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2, refM3 = v2.asDiagonal() * refM2);
 | |
|     VERIFY_IS_APPROX(m3 = v1.asDiagonal() * m2.transpose(), refM3 = v1.asDiagonal() * refM2.transpose());
 | |
| 
 | |
|     VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2 * v1.asDiagonal(), refM3 = v2.asDiagonal() * refM2 * v1.asDiagonal());
 | |
| 
 | |
|     VERIFY_IS_APPROX(v2 = m2 * v1.asDiagonal() * v1, refM2 * v1.asDiagonal() * v1);
 | |
|     VERIFY_IS_APPROX(v3 = v2.asDiagonal() * m2 * v1, v2.asDiagonal() * refM2 * v1);
 | |
| 
 | |
|     // evaluate to a dense matrix to check the .row() and .col() iterator functions
 | |
|     VERIFY_IS_APPROX(d3 = m2 * d1, refM3 = refM2 * d1);
 | |
|     VERIFY_IS_APPROX(d3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2);
 | |
|     VERIFY_IS_APPROX(d3 = d2 * m2, refM3 = d2 * refM2);
 | |
|     VERIFY_IS_APPROX(d3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose());
 | |
|   }
 | |
| 
 | |
|   // test self-adjoint and triangular-view products
 | |
|   {
 | |
|     DenseMatrix b = DenseMatrix::Random(rows, rows);
 | |
|     DenseMatrix x = DenseMatrix::Random(rows, rows);
 | |
|     DenseMatrix refX = DenseMatrix::Random(rows, rows);
 | |
|     DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
 | |
|     DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
 | |
|     DenseMatrix refS = DenseMatrix::Zero(rows, rows);
 | |
|     DenseMatrix refA = DenseMatrix::Zero(rows, rows);
 | |
|     SparseMatrixType mUp(rows, rows);
 | |
|     SparseMatrixType mLo(rows, rows);
 | |
|     SparseMatrixType mS(rows, rows);
 | |
|     SparseMatrixType mA(rows, rows);
 | |
|     initSparse<Scalar>(density, refA, mA);
 | |
|     do {
 | |
|       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag | /*ForceNonZeroDiag|*/ MakeUpperTriangular);
 | |
|     } while (refUp.isZero());
 | |
|     refLo = refUp.adjoint();
 | |
|     mLo = mUp.adjoint();
 | |
|     refS = refUp + refLo;
 | |
|     refS.diagonal() *= 0.5;
 | |
|     mS = mUp + mLo;
 | |
|     // TODO be able to address the diagonal....
 | |
|     for (int k = 0; k < mS.outerSize(); ++k)
 | |
|       for (typename SparseMatrixType::InnerIterator it(mS, k); it; ++it)
 | |
|         if (it.index() == k) it.valueRef() *= Scalar(0.5);
 | |
| 
 | |
|     VERIFY_IS_APPROX(refS.adjoint(), refS);
 | |
|     VERIFY_IS_APPROX(mS.adjoint(), mS);
 | |
|     VERIFY_IS_APPROX(mS, refS);
 | |
|     VERIFY_IS_APPROX(x = mS * b, refX = refS * b);
 | |
| 
 | |
|     // sparse selfadjointView with dense matrices
 | |
|     VERIFY_IS_APPROX(x = mUp.template selfadjointView<Upper>() * b, refX = refS * b);
 | |
|     VERIFY_IS_APPROX(x = mLo.template selfadjointView<Lower>() * b, refX = refS * b);
 | |
|     VERIFY_IS_APPROX(x = mS.template selfadjointView<Upper | Lower>() * b, refX = refS * b);
 | |
| 
 | |
|     VERIFY_IS_APPROX(x = b * mUp.template selfadjointView<Upper>(), refX = b * refS);
 | |
|     VERIFY_IS_APPROX(x = b * mLo.template selfadjointView<Lower>(), refX = b * refS);
 | |
|     VERIFY_IS_APPROX(x = b * mS.template selfadjointView<Upper | Lower>(), refX = b * refS);
 | |
| 
 | |
|     VERIFY_IS_APPROX(x.noalias() += mUp.template selfadjointView<Upper>() * b, refX += refS * b);
 | |
|     VERIFY_IS_APPROX(x.noalias() -= mLo.template selfadjointView<Lower>() * b, refX -= refS * b);
 | |
|     VERIFY_IS_APPROX(x.noalias() += mS.template selfadjointView<Upper | Lower>() * b, refX += refS * b);
 | |
| 
 | |
|     // sparse selfadjointView with sparse matrices
 | |
|     SparseMatrixType mSres(rows, rows);
 | |
|     VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>() * mS,
 | |
|                      refX = refLo.template selfadjointView<Lower>() * refS);
 | |
|     VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
 | |
|                      refX = refS * refLo.template selfadjointView<Lower>());
 | |
| 
 | |
|     // sparse triangularView with dense matrices
 | |
|     VERIFY_IS_APPROX(x = mA.template triangularView<Upper>() * b, refX = refA.template triangularView<Upper>() * b);
 | |
|     VERIFY_IS_APPROX(x = mA.template triangularView<Lower>() * b, refX = refA.template triangularView<Lower>() * b);
 | |
|     VERIFY_IS_APPROX(x = b * mA.template triangularView<Upper>(), refX = b * refA.template triangularView<Upper>());
 | |
|     VERIFY_IS_APPROX(x = b * mA.template triangularView<Lower>(), refX = b * refA.template triangularView<Lower>());
 | |
| 
 | |
|     // sparse triangularView with sparse matrices
 | |
|     VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>() * mS,
 | |
|                      refX = refA.template triangularView<Lower>() * refS);
 | |
|     VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(),
 | |
|                      refX = refS * refA.template triangularView<Lower>());
 | |
|     VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>() * mS,
 | |
|                      refX = refA.template triangularView<Upper>() * refS);
 | |
|     VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(),
 | |
|                      refX = refS * refA.template triangularView<Upper>());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // New test for Bug in SparseTimeDenseProduct
 | |
| template <typename SparseMatrixType, typename DenseMatrixType>
 | |
| void sparse_product_regression_test() {
 | |
|   // This code does not compile with afflicted versions of the bug
 | |
|   SparseMatrixType sm1(3, 2);
 | |
|   DenseMatrixType m2(2, 2);
 | |
|   sm1.setZero();
 | |
|   m2.setZero();
 | |
| 
 | |
|   DenseMatrixType m3 = sm1 * m2;
 | |
| 
 | |
|   // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct
 | |
|   // bug
 | |
| 
 | |
|   SparseMatrixType sm2(20000, 2);
 | |
|   sm2.setZero();
 | |
|   DenseMatrixType m4(sm2 * m2);
 | |
| 
 | |
|   VERIFY_IS_APPROX(m4(0, 0), 0.0);
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void bug_942() {
 | |
|   typedef Matrix<Scalar, Dynamic, 1> Vector;
 | |
|   typedef SparseMatrix<Scalar, ColMajor> ColSpMat;
 | |
|   typedef SparseMatrix<Scalar, RowMajor> RowSpMat;
 | |
|   ColSpMat cmA(1, 1);
 | |
|   cmA.insert(0, 0) = 1;
 | |
| 
 | |
|   RowSpMat rmA(1, 1);
 | |
|   rmA.insert(0, 0) = 1;
 | |
| 
 | |
|   Vector d(1);
 | |
|   d[0] = 2;
 | |
| 
 | |
|   double res = 2;
 | |
| 
 | |
|   VERIFY_IS_APPROX((cmA * d.asDiagonal()).eval().coeff(0, 0), res);
 | |
|   VERIFY_IS_APPROX((d.asDiagonal() * rmA).eval().coeff(0, 0), res);
 | |
|   VERIFY_IS_APPROX((rmA * d.asDiagonal()).eval().coeff(0, 0), res);
 | |
|   VERIFY_IS_APPROX((d.asDiagonal() * cmA).eval().coeff(0, 0), res);
 | |
| }
 | |
| 
 | |
| template <typename Real>
 | |
| void test_mixing_types() {
 | |
|   typedef std::complex<Real> Cplx;
 | |
|   typedef SparseMatrix<Real> SpMatReal;
 | |
|   typedef SparseMatrix<Cplx> SpMatCplx;
 | |
|   typedef SparseMatrix<Cplx, RowMajor> SpRowMatCplx;
 | |
|   typedef Matrix<Real, Dynamic, Dynamic> DenseMatReal;
 | |
|   typedef Matrix<Cplx, Dynamic, Dynamic> DenseMatCplx;
 | |
| 
 | |
|   Index n = internal::random<Index>(1, 100);
 | |
|   double density = (std::max)(8. / static_cast<double>(n * n), 0.2);
 | |
| 
 | |
|   SpMatReal sR1(n, n);
 | |
|   SpMatCplx sC1(n, n), sC2(n, n), sC3(n, n);
 | |
|   SpRowMatCplx sCR(n, n);
 | |
|   DenseMatReal dR1(n, n);
 | |
|   DenseMatCplx dC1(n, n), dC2(n, n), dC3(n, n);
 | |
| 
 | |
|   initSparse<Real>(density, dR1, sR1);
 | |
|   initSparse<Cplx>(density, dC1, sC1);
 | |
|   initSparse<Cplx>(density, dC2, sC2);
 | |
| 
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1);
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()),
 | |
|                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()),
 | |
|                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sCR = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1);
 | |
|   VERIFY_IS_APPROX(sCR = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
 | |
|   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
 | |
|   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()),
 | |
|                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()),
 | |
|                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1);
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
 | |
|   VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()).pruned(),
 | |
|                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()).pruned(),
 | |
|                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sCR = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1);
 | |
|   VERIFY_IS_APPROX(sCR = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
 | |
|   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
 | |
|   VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()).pruned(),
 | |
|                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()).pruned(),
 | |
|                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
 | |
| 
 | |
|   VERIFY_IS_APPROX(dC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1);
 | |
|   VERIFY_IS_APPROX(dC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
 | |
|   VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(dC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(dC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
 | |
|   VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1.transpose()),
 | |
|                    dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
 | |
|   VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1.transpose()),
 | |
|                    dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
 | |
| 
 | |
|   VERIFY_IS_APPROX(dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1);
 | |
|   VERIFY_IS_APPROX(dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1);
 | |
|   VERIFY_IS_APPROX(dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>());
 | |
| 
 | |
|   VERIFY_IS_APPROX(dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1);
 | |
|   VERIFY_IS_APPROX(dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0));
 | |
|   VERIFY_IS_APPROX(dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>());
 | |
|   VERIFY_IS_APPROX(dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0));
 | |
| }
 | |
| 
 | |
| // Test mixed storage types
 | |
| template <int OrderA, int OrderB, int OrderC>
 | |
| void test_mixed_storage_imp() {
 | |
|   typedef float Real;
 | |
|   typedef Matrix<Real, Dynamic, Dynamic> DenseMat;
 | |
| 
 | |
|   // Case: Large inputs but small result
 | |
|   {
 | |
|     SparseMatrix<Real, OrderA> A(8, 512);
 | |
|     SparseMatrix<Real, OrderB> B(512, 8);
 | |
|     DenseMat refA(8, 512);
 | |
|     DenseMat refB(512, 8);
 | |
| 
 | |
|     initSparse<Real>(0.1, refA, A);
 | |
|     initSparse<Real>(0.1, refB, B);
 | |
| 
 | |
|     SparseMatrix<Real, OrderC, std::int8_t> result;
 | |
|     SparseMatrix<Real, OrderC> result_large;
 | |
|     DenseMat refResult;
 | |
| 
 | |
|     VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB);
 | |
|   }
 | |
| 
 | |
|   // Case: Small input but large result
 | |
|   {
 | |
|     SparseMatrix<Real, OrderA, std::int8_t> A(127, 8);
 | |
|     SparseMatrix<Real, OrderB, std::int8_t> B(8, 127);
 | |
|     DenseMat refA(127, 8);
 | |
|     DenseMat refB(8, 127);
 | |
| 
 | |
|     initSparse<Real>(0.01, refA, A);
 | |
|     initSparse<Real>(0.01, refB, B);
 | |
| 
 | |
|     SparseMatrix<Real, OrderC> result;
 | |
|     SparseMatrix<Real, OrderC> result_large;
 | |
|     DenseMat refResult;
 | |
| 
 | |
|     VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void test_mixed_storage() {
 | |
|   test_mixed_storage_imp<RowMajor, RowMajor, RowMajor>();
 | |
|   test_mixed_storage_imp<RowMajor, RowMajor, ColMajor>();
 | |
|   test_mixed_storage_imp<RowMajor, ColMajor, RowMajor>();
 | |
|   test_mixed_storage_imp<RowMajor, ColMajor, ColMajor>();
 | |
|   test_mixed_storage_imp<ColMajor, RowMajor, RowMajor>();
 | |
|   test_mixed_storage_imp<ColMajor, RowMajor, ColMajor>();
 | |
|   test_mixed_storage_imp<ColMajor, ColMajor, RowMajor>();
 | |
|   test_mixed_storage_imp<ColMajor, ColMajor, ColMajor>();
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(sparse_product) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((sparse_product<SparseMatrix<double, ColMajor> >()));
 | |
|     CALL_SUBTEST_1((sparse_product<SparseMatrix<double, RowMajor> >()));
 | |
|     CALL_SUBTEST_1((bug_942<double>()));
 | |
|     CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, ColMajor> >()));
 | |
|     CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, RowMajor> >()));
 | |
|     CALL_SUBTEST_3((sparse_product<SparseMatrix<float, ColMajor, long int> >()));
 | |
|     CALL_SUBTEST_4((
 | |
|         sparse_product_regression_test<SparseMatrix<double, RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()));
 | |
| 
 | |
|     CALL_SUBTEST_5((test_mixing_types<float>()));
 | |
|     CALL_SUBTEST_5((test_mixed_storage()));
 | |
|   }
 | |
| }
 | 
