141 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
 | |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| #include "sparse.h"
 | |
| #include <Eigen/SparseQR>
 | |
| 
 | |
| template <typename MatrixType, typename DenseMat>
 | |
| int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150) {
 | |
|   eigen_assert(maxRows >= maxCols);
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   int rows = internal::random<int>(1, maxRows);
 | |
|   int cols = internal::random<int>(1, maxCols);
 | |
|   double density = (std::max)(8. / (rows * cols), 0.01);
 | |
| 
 | |
|   A.resize(rows, cols);
 | |
|   dA.resize(rows, cols);
 | |
|   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
 | |
|   A.makeCompressed();
 | |
|   int nop = internal::random<int>(0, internal::random<double>(0, 1) > 0.5 ? cols / 2 : 0);
 | |
|   for (int k = 0; k < nop; ++k) {
 | |
|     int j0 = internal::random<int>(0, cols - 1);
 | |
|     int j1 = internal::random<int>(0, cols - 1);
 | |
|     Scalar s = internal::random<Scalar>();
 | |
|     A.col(j0) = s * A.col(j1);
 | |
|     dA.col(j0) = s * dA.col(j1);
 | |
|   }
 | |
| 
 | |
|   //   if(rows<cols) {
 | |
|   //     A.conservativeResize(cols,cols);
 | |
|   //     dA.conservativeResize(cols,cols);
 | |
|   //     dA.bottomRows(cols-rows).setZero();
 | |
|   //   }
 | |
| 
 | |
|   return rows;
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void test_sparseqr_scalar() {
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef SparseMatrix<Scalar, ColMajor> MatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic> DenseMat;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
|   MatrixType A;
 | |
|   DenseMat dA;
 | |
|   DenseVector refX, x, b;
 | |
|   SparseQR<MatrixType, COLAMDOrdering<int> > solver;
 | |
|   generate_sparse_rectangular_problem(A, dA);
 | |
| 
 | |
|   b = dA * DenseVector::Random(A.cols());
 | |
|   solver.compute(A);
 | |
| 
 | |
|   // Q should be MxM
 | |
|   VERIFY_IS_EQUAL(solver.matrixQ().rows(), A.rows());
 | |
|   VERIFY_IS_EQUAL(solver.matrixQ().cols(), A.rows());
 | |
| 
 | |
|   // R should be MxN
 | |
|   VERIFY_IS_EQUAL(solver.matrixR().rows(), A.rows());
 | |
|   VERIFY_IS_EQUAL(solver.matrixR().cols(), A.cols());
 | |
| 
 | |
|   // Q and R can be multiplied
 | |
|   DenseMat recoveredA = solver.matrixQ() * DenseMat(solver.matrixR().template triangularView<Upper>()) *
 | |
|                         solver.colsPermutation().transpose();
 | |
|   VERIFY_IS_EQUAL(recoveredA.rows(), A.rows());
 | |
|   VERIFY_IS_EQUAL(recoveredA.cols(), A.cols());
 | |
| 
 | |
|   // and in the full rank case the original matrix is recovered
 | |
|   if (solver.rank() == A.cols()) {
 | |
|     VERIFY_IS_APPROX(A, recoveredA);
 | |
|   }
 | |
| 
 | |
|   if (internal::random<float>(0, 1) > 0.5f)
 | |
|     solver.factorize(A);  // this checks that calling analyzePattern is not needed if the pattern do not change.
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse QR factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
|   x = solver.solve(b);
 | |
|   if (solver.info() != Success) {
 | |
|     std::cerr << "sparse QR factorization failed\n";
 | |
|     exit(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compare with a dense QR solver
 | |
|   ColPivHouseholderQR<DenseMat> dqr(dA);
 | |
|   refX = dqr.solve(b);
 | |
| 
 | |
|   bool rank_deficient = A.cols() > A.rows() || dqr.rank() < A.cols();
 | |
|   if (rank_deficient) {
 | |
|     // rank deficient problem -> we might have to increase the threshold
 | |
|     // to get a correct solution.
 | |
|     RealScalar th =
 | |
|         RealScalar(20) * dA.colwise().norm().maxCoeff() * (A.rows() + A.cols()) * NumTraits<RealScalar>::epsilon();
 | |
|     for (Index k = 0; (k < 16) && !test_isApprox(A * x, b); ++k) {
 | |
|       th *= RealScalar(10);
 | |
|       solver.setPivotThreshold(th);
 | |
|       solver.compute(A);
 | |
|       x = solver.solve(b);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VERIFY_IS_APPROX(A * x, b);
 | |
| 
 | |
|   // For rank deficient problem, the estimated rank might
 | |
|   // be slightly off, so let's only raise a warning in such cases.
 | |
|   if (rank_deficient) ++g_test_level;
 | |
|   VERIFY_IS_EQUAL(solver.rank(), dqr.rank());
 | |
|   if (rank_deficient) --g_test_level;
 | |
| 
 | |
|   if (solver.rank() == A.cols())  // full rank
 | |
|     VERIFY_IS_APPROX(x, refX);
 | |
|   //   else
 | |
|   //     VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
 | |
| 
 | |
|   // Compute explicitly the matrix Q
 | |
|   MatrixType Q, QtQ, idM;
 | |
|   Q = solver.matrixQ();
 | |
|   // Check  ||Q' * Q - I ||
 | |
|   QtQ = Q * Q.adjoint();
 | |
|   idM.resize(Q.rows(), Q.rows());
 | |
|   idM.setIdentity();
 | |
|   VERIFY(idM.isApprox(QtQ));
 | |
| 
 | |
|   // Q to dense
 | |
|   DenseMat dQ;
 | |
|   dQ = solver.matrixQ();
 | |
|   VERIFY_IS_APPROX(Q, dQ);
 | |
| }
 | |
| EIGEN_DECLARE_TEST(sparseqr) {
 | |
|   for (int i = 0; i < g_repeat; ++i) {
 | |
|     CALL_SUBTEST_1(test_sparseqr_scalar<double>());
 | |
|     CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
 | |
|   }
 | |
| }
 | 
