589 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			589 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <iterator>
 | |
| #include <numeric>
 | |
| 
 | |
| template <class Iterator>
 | |
| std::reverse_iterator<Iterator> make_reverse_iterator(Iterator i) {
 | |
|   return std::reverse_iterator<Iterator>(i);
 | |
| }
 | |
| 
 | |
| using std::is_sorted;
 | |
| 
 | |
| template <typename XprType>
 | |
| bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType>&) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename XprType>
 | |
| bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType>&) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename Iter>
 | |
| bool is_default_constructible_and_assignable(const Iter& it) {
 | |
|   VERIFY(std::is_default_constructible<Iter>::value);
 | |
|   VERIFY(std::is_nothrow_default_constructible<Iter>::value);
 | |
|   Iter it2;
 | |
|   it2 = it;
 | |
|   return (it == it2);
 | |
| }
 | |
| 
 | |
| template <typename Xpr>
 | |
| void check_begin_end_for_loop(Xpr xpr) {
 | |
|   const Xpr& cxpr(xpr);
 | |
|   Index i = 0;
 | |
| 
 | |
|   i = 0;
 | |
|   for (typename Xpr::iterator it = xpr.begin(); it != xpr.end(); ++it) {
 | |
|     VERIFY_IS_EQUAL(*it, xpr[i++]);
 | |
|   }
 | |
| 
 | |
|   i = 0;
 | |
|   for (typename Xpr::const_iterator it = xpr.cbegin(); it != xpr.cend(); ++it) {
 | |
|     VERIFY_IS_EQUAL(*it, xpr[i++]);
 | |
|   }
 | |
| 
 | |
|   i = 0;
 | |
|   for (typename Xpr::const_iterator it = cxpr.begin(); it != cxpr.end(); ++it) {
 | |
|     VERIFY_IS_EQUAL(*it, xpr[i++]);
 | |
|   }
 | |
| 
 | |
|   i = 0;
 | |
|   for (typename Xpr::const_iterator it = xpr.begin(); it != xpr.end(); ++it) {
 | |
|     VERIFY_IS_EQUAL(*it, xpr[i++]);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // simple API check
 | |
|     typename Xpr::const_iterator cit = xpr.begin();
 | |
|     cit = xpr.cbegin();
 | |
| 
 | |
|     auto tmp1 = xpr.begin();
 | |
|     VERIFY(tmp1 == xpr.begin());
 | |
|     auto tmp2 = xpr.cbegin();
 | |
|     VERIFY(tmp2 == xpr.cbegin());
 | |
|   }
 | |
| 
 | |
|   VERIFY(xpr.end() - xpr.begin() == xpr.size());
 | |
|   VERIFY(xpr.cend() - xpr.begin() == xpr.size());
 | |
|   VERIFY(xpr.end() - xpr.cbegin() == xpr.size());
 | |
|   VERIFY(xpr.cend() - xpr.cbegin() == xpr.size());
 | |
| 
 | |
|   if (xpr.size() > 0) {
 | |
|     VERIFY(xpr.begin() != xpr.end());
 | |
|     VERIFY(xpr.begin() < xpr.end());
 | |
|     VERIFY(xpr.begin() <= xpr.end());
 | |
|     VERIFY(!(xpr.begin() == xpr.end()));
 | |
|     VERIFY(!(xpr.begin() > xpr.end()));
 | |
|     VERIFY(!(xpr.begin() >= xpr.end()));
 | |
| 
 | |
|     VERIFY(xpr.cbegin() != xpr.end());
 | |
|     VERIFY(xpr.cbegin() < xpr.end());
 | |
|     VERIFY(xpr.cbegin() <= xpr.end());
 | |
|     VERIFY(!(xpr.cbegin() == xpr.end()));
 | |
|     VERIFY(!(xpr.cbegin() > xpr.end()));
 | |
|     VERIFY(!(xpr.cbegin() >= xpr.end()));
 | |
| 
 | |
|     VERIFY(xpr.begin() != xpr.cend());
 | |
|     VERIFY(xpr.begin() < xpr.cend());
 | |
|     VERIFY(xpr.begin() <= xpr.cend());
 | |
|     VERIFY(!(xpr.begin() == xpr.cend()));
 | |
|     VERIFY(!(xpr.begin() > xpr.cend()));
 | |
|     VERIFY(!(xpr.begin() >= xpr.cend()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Rows, int Cols>
 | |
| void test_stl_iterators(int rows = Rows, int cols = Cols) {
 | |
|   typedef Matrix<Scalar, Rows, 1> VectorType;
 | |
|   typedef Matrix<Scalar, 1, Cols> RowVectorType;
 | |
|   typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType;
 | |
|   typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType;
 | |
|   VectorType v = VectorType::Random(rows);
 | |
|   const VectorType& cv(v);
 | |
|   ColMatrixType A = ColMatrixType::Random(rows, cols);
 | |
|   const ColMatrixType& cA(A);
 | |
|   RowMatrixType B = RowMatrixType::Random(rows, cols);
 | |
|   using Eigen::placeholders::last;
 | |
| 
 | |
|   Index i, j;
 | |
| 
 | |
|   // Verify that iterators are default constructible (See bug #1900)
 | |
|   {
 | |
|     VERIFY(is_default_constructible_and_assignable(v.begin()));
 | |
|     VERIFY(is_default_constructible_and_assignable(v.end()));
 | |
|     VERIFY(is_default_constructible_and_assignable(cv.begin()));
 | |
|     VERIFY(is_default_constructible_and_assignable(cv.end()));
 | |
| 
 | |
|     VERIFY(is_default_constructible_and_assignable(A.row(0).begin()));
 | |
|     VERIFY(is_default_constructible_and_assignable(A.row(0).end()));
 | |
|     VERIFY(is_default_constructible_and_assignable(cA.row(0).begin()));
 | |
|     VERIFY(is_default_constructible_and_assignable(cA.row(0).end()));
 | |
| 
 | |
|     VERIFY(is_default_constructible_and_assignable(B.row(0).begin()));
 | |
|     VERIFY(is_default_constructible_and_assignable(B.row(0).end()));
 | |
|   }
 | |
| 
 | |
|   // Check we got a fast pointer-based iterator when expected
 | |
|   {
 | |
|     VERIFY(is_pointer_based_stl_iterator(v.begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(v.end()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cv.begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cv.end()));
 | |
| 
 | |
|     j = internal::random<Index>(0, A.cols() - 1);
 | |
|     VERIFY(is_pointer_based_stl_iterator(A.col(j).begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(A.col(j).end()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cA.col(j).begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cA.col(j).end()));
 | |
| 
 | |
|     i = internal::random<Index>(0, A.rows() - 1);
 | |
|     VERIFY(is_pointer_based_stl_iterator(A.row(i).begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(A.row(i).end()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cA.row(i).begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cA.row(i).end()));
 | |
| 
 | |
|     VERIFY(is_pointer_based_stl_iterator(A.reshaped().begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(A.reshaped().end()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cA.reshaped().begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(cA.reshaped().end()));
 | |
| 
 | |
|     VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()));
 | |
|     VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()));
 | |
| 
 | |
|     VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()));
 | |
|     VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     check_begin_end_for_loop(v);
 | |
|     check_begin_end_for_loop(A.col(internal::random<Index>(0, A.cols() - 1)));
 | |
|     check_begin_end_for_loop(A.row(internal::random<Index>(0, A.rows() - 1)));
 | |
|     check_begin_end_for_loop(v + v);
 | |
|   }
 | |
| 
 | |
|   // check swappable
 | |
|   {
 | |
|     using std::swap;
 | |
|     // pointer-based
 | |
|     {
 | |
|       VectorType v_copy = v;
 | |
|       auto a = v.begin();
 | |
|       auto b = v.end() - 1;
 | |
|       swap(a, b);
 | |
|       VERIFY_IS_EQUAL(v, v_copy);
 | |
|       VERIFY_IS_EQUAL(*b, *v.begin());
 | |
|       VERIFY_IS_EQUAL(*b, v(0));
 | |
|       VERIFY_IS_EQUAL(*a, v.end()[-1]);
 | |
|       VERIFY_IS_EQUAL(*a, v(last));
 | |
|     }
 | |
| 
 | |
|     // generic
 | |
|     {
 | |
|       RowMatrixType B_copy = B;
 | |
|       auto Br = B.reshaped();
 | |
|       auto a = Br.begin();
 | |
|       auto b = Br.end() - 1;
 | |
|       swap(a, b);
 | |
|       VERIFY_IS_EQUAL(B, B_copy);
 | |
|       VERIFY_IS_EQUAL(*b, *Br.begin());
 | |
|       VERIFY_IS_EQUAL(*b, Br(0));
 | |
|       VERIFY_IS_EQUAL(*a, Br.end()[-1]);
 | |
|       VERIFY_IS_EQUAL(*a, Br(last));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check non-const iterator with for-range loops
 | |
|   {
 | |
|     i = 0;
 | |
|     for (auto x : v) {
 | |
|       VERIFY_IS_EQUAL(x, v[i++]);
 | |
|     }
 | |
| 
 | |
|     j = internal::random<Index>(0, A.cols() - 1);
 | |
|     i = 0;
 | |
|     for (auto x : A.col(j)) {
 | |
|       VERIFY_IS_EQUAL(x, A(i++, j));
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     for (auto x : (v + A.col(j))) {
 | |
|       VERIFY_IS_APPROX(x, v(i) + A(i, j));
 | |
|       ++i;
 | |
|     }
 | |
| 
 | |
|     j = 0;
 | |
|     i = internal::random<Index>(0, A.rows() - 1);
 | |
|     for (auto x : A.row(i)) {
 | |
|       VERIFY_IS_EQUAL(x, A(i, j++));
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     for (auto x : A.reshaped()) {
 | |
|       VERIFY_IS_EQUAL(x, A(i++));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // same for const_iterator
 | |
|   {
 | |
|     i = 0;
 | |
|     for (auto x : cv) {
 | |
|       VERIFY_IS_EQUAL(x, v[i++]);
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     for (auto x : cA.reshaped()) {
 | |
|       VERIFY_IS_EQUAL(x, A(i++));
 | |
|     }
 | |
| 
 | |
|     j = 0;
 | |
|     i = internal::random<Index>(0, A.rows() - 1);
 | |
|     for (auto x : cA.row(i)) {
 | |
|       VERIFY_IS_EQUAL(x, A(i, j++));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check reshaped() on row-major
 | |
|   {
 | |
|     i = 0;
 | |
|     Matrix<Scalar, Dynamic, Dynamic, ColMajor> Bc = B;
 | |
|     for (auto x : B.reshaped()) {
 | |
|       VERIFY_IS_EQUAL(x, Bc(i++));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check write access
 | |
|   {
 | |
|     VectorType w(v.size());
 | |
|     i = 0;
 | |
|     for (auto& x : w) {
 | |
|       x = v(i++);
 | |
|     }
 | |
|     VERIFY_IS_EQUAL(v, w);
 | |
|   }
 | |
| 
 | |
|   // check for dangling pointers
 | |
|   {
 | |
|     // no dangling because pointer-based
 | |
|     {
 | |
|       j = internal::random<Index>(0, A.cols() - 1);
 | |
|       auto it = A.col(j).begin();
 | |
|       for (i = 0; i < rows; ++i) {
 | |
|         VERIFY_IS_EQUAL(it[i], A(i, j));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // no dangling because pointer-based
 | |
|     {
 | |
|       i = internal::random<Index>(0, A.rows() - 1);
 | |
|       auto it = A.row(i).begin();
 | |
|       for (j = 0; j < cols; ++j) {
 | |
|         VERIFY_IS_EQUAL(it[j], A(i, j));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     {
 | |
|       j = internal::random<Index>(0, A.cols() - 1);
 | |
|       // this would produce a dangling pointer:
 | |
|       // auto it = (A+2*A).col(j).begin();
 | |
|       // we need to name the temporary expression:
 | |
|       auto tmp = (A + 2 * A).col(j);
 | |
|       auto it = tmp.begin();
 | |
|       for (i = 0; i < rows; ++i) {
 | |
|         VERIFY_IS_APPROX(it[i], 3 * A(i, j));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // check basic for loop on vector-wise iterators
 | |
|     j = 0;
 | |
|     for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
 | |
|       VERIFY_IS_APPROX(it->coeff(0), A(0, j));
 | |
|       VERIFY_IS_APPROX((*it).coeff(0), A(0, j));
 | |
|     }
 | |
|     j = 0;
 | |
|     for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
 | |
|       (*it).coeffRef(0) = (*it).coeff(0);  // compilation check
 | |
|       it->coeffRef(0) = it->coeff(0);      // compilation check
 | |
|       VERIFY_IS_APPROX(it->coeff(0), A(0, j));
 | |
|       VERIFY_IS_APPROX((*it).coeff(0), A(0, j));
 | |
|     }
 | |
| 
 | |
|     // check valuetype gives us a copy
 | |
|     j = 0;
 | |
|     for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
 | |
|       typename decltype(it)::value_type tmp = *it;
 | |
|       VERIFY_IS_NOT_EQUAL(tmp.data(), it->data());
 | |
|       VERIFY_IS_APPROX(tmp, A.col(j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (rows >= 3) {
 | |
|     VERIFY_IS_EQUAL((v.begin() + rows / 2)[1], v(rows / 2 + 1));
 | |
| 
 | |
|     VERIFY_IS_EQUAL((A.rowwise().begin() + rows / 2)[1], A.row(rows / 2 + 1));
 | |
|   }
 | |
| 
 | |
|   if (cols >= 3) {
 | |
|     VERIFY_IS_EQUAL((A.colwise().begin() + cols / 2)[1], A.col(cols / 2 + 1));
 | |
|   }
 | |
| 
 | |
|   // check std::sort
 | |
|   {
 | |
|     // first check that is_sorted returns false when required
 | |
|     if (rows >= 2) {
 | |
|       v(1) = v(0) - Scalar(1);
 | |
|       VERIFY(!is_sorted(std::begin(v), std::end(v)));
 | |
|     }
 | |
| 
 | |
|     // on a vector
 | |
|     {
 | |
|       std::sort(v.begin(), v.end());
 | |
|       VERIFY(is_sorted(v.begin(), v.end()));
 | |
|       VERIFY(!::is_sorted(make_reverse_iterator(v.end()), make_reverse_iterator(v.begin())));
 | |
|     }
 | |
| 
 | |
|     // on a column of a column-major matrix -> pointer-based iterator and default increment
 | |
|     {
 | |
|       j = internal::random<Index>(0, A.cols() - 1);
 | |
|       // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
 | |
|       typename ColMatrixType::ColXpr Acol = A.col(j);
 | |
|       std::sort(Acol.begin(), Acol.end());
 | |
|       VERIFY(is_sorted(Acol.cbegin(), Acol.cend()));
 | |
|       A.setRandom();
 | |
| 
 | |
|       std::sort(A.col(j).begin(), A.col(j).end());
 | |
|       VERIFY(is_sorted(A.col(j).cbegin(), A.col(j).cend()));
 | |
|       A.setRandom();
 | |
|     }
 | |
| 
 | |
|     // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
 | |
|     {
 | |
|       i = internal::random<Index>(0, A.rows() - 1);
 | |
|       typename ColMatrixType::RowXpr Arow = A.row(i);
 | |
|       VERIFY_IS_EQUAL(std::distance(Arow.begin(), Arow.end()), cols);
 | |
|       std::sort(Arow.begin(), Arow.end());
 | |
|       VERIFY(is_sorted(Arow.cbegin(), Arow.cend()));
 | |
|       A.setRandom();
 | |
| 
 | |
|       std::sort(A.row(i).begin(), A.row(i).end());
 | |
|       VERIFY(is_sorted(A.row(i).cbegin(), A.row(i).cend()));
 | |
|       A.setRandom();
 | |
|     }
 | |
| 
 | |
|     // with a generic iterator
 | |
|     {
 | |
|       Reshaped<RowMatrixType, RowMatrixType::SizeAtCompileTime, 1> B1 = B.reshaped();
 | |
|       std::sort(B1.begin(), B1.end());
 | |
|       VERIFY(is_sorted(B1.cbegin(), B1.cend()));
 | |
|       B.setRandom();
 | |
| 
 | |
|       // assertion because nested expressions are different
 | |
|       // std::sort(B.reshaped().begin(),B.reshaped().end());
 | |
|       // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
 | |
|       // B.setRandom();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check with partial_sum
 | |
|   {
 | |
|     j = internal::random<Index>(0, A.cols() - 1);
 | |
|     typename ColMatrixType::ColXpr Acol = A.col(j);
 | |
|     std::partial_sum(Acol.begin(), Acol.end(), v.begin());
 | |
|     VERIFY_IS_APPROX(v(seq(1, last)), v(seq(0, last - 1)) + Acol(seq(1, last)));
 | |
| 
 | |
|     // inplace
 | |
|     std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
 | |
|     VERIFY_IS_APPROX(v, Acol);
 | |
|   }
 | |
| 
 | |
|   // stress random access as required by std::nth_element
 | |
|   if (rows >= 3) {
 | |
|     v.setRandom();
 | |
|     VectorType v1 = v;
 | |
|     std::sort(v1.begin(), v1.end());
 | |
|     std::nth_element(v.begin(), v.begin() + rows / 2, v.end());
 | |
|     VERIFY_IS_APPROX(v1(rows / 2), v(rows / 2));
 | |
| 
 | |
|     v.setRandom();
 | |
|     v1 = v;
 | |
|     std::sort(v1.begin() + rows / 2, v1.end());
 | |
|     std::nth_element(v.begin() + rows / 2, v.begin() + rows / 4, v.end());
 | |
|     VERIFY_IS_APPROX(v1(rows / 4), v(rows / 4));
 | |
|   }
 | |
| 
 | |
|   // check rows/cols iterators with range-for loops
 | |
|   {
 | |
|     j = 0;
 | |
|     for (auto c : A.colwise()) {
 | |
|       VERIFY_IS_APPROX(c.sum(), A.col(j).sum());
 | |
|       ++j;
 | |
|     }
 | |
|     j = 0;
 | |
|     for (auto c : B.colwise()) {
 | |
|       VERIFY_IS_APPROX(c.sum(), B.col(j).sum());
 | |
|       ++j;
 | |
|     }
 | |
| 
 | |
|     j = 0;
 | |
|     for (auto c : B.colwise()) {
 | |
|       i = 0;
 | |
|       for (auto& x : c) {
 | |
|         VERIFY_IS_EQUAL(x, B(i, j));
 | |
|         x = A(i, j);
 | |
|         ++i;
 | |
|       }
 | |
|       ++j;
 | |
|     }
 | |
|     VERIFY_IS_APPROX(A, B);
 | |
|     B.setRandom();
 | |
| 
 | |
|     i = 0;
 | |
|     for (auto r : A.rowwise()) {
 | |
|       VERIFY_IS_APPROX(r.sum(), A.row(i).sum());
 | |
|       ++i;
 | |
|     }
 | |
|     i = 0;
 | |
|     for (auto r : B.rowwise()) {
 | |
|       VERIFY_IS_APPROX(r.sum(), B.row(i).sum());
 | |
|       ++i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check rows/cols iterators with STL algorithms
 | |
|   {
 | |
|     RowVectorType row = RowVectorType::Random(cols);
 | |
|     A.rowwise() = row;
 | |
|     VERIFY(std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) {
 | |
|       return internal::isApprox(x.squaredNorm(), row.squaredNorm());
 | |
|     }));
 | |
|     VERIFY(std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) {
 | |
|       return internal::isApprox(x.squaredNorm(), row.squaredNorm());
 | |
|     }));
 | |
| 
 | |
|     VectorType col = VectorType::Random(rows);
 | |
|     A.colwise() = col;
 | |
|     VERIFY(std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) {
 | |
|       return internal::isApprox(x.squaredNorm(), col.squaredNorm());
 | |
|     }));
 | |
|     VERIFY(std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) {
 | |
|       return internal::isApprox(x.squaredNorm(), col.squaredNorm());
 | |
|     }));
 | |
|     VERIFY(std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) {
 | |
|       return internal::isApprox(x.squaredNorm(), col.squaredNorm());
 | |
|     }));
 | |
|     VERIFY(std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) {
 | |
|       return internal::isApprox(x.squaredNorm(), col.squaredNorm());
 | |
|     }));
 | |
| 
 | |
|     i = internal::random<Index>(0, A.rows() - 1);
 | |
|     A.setRandom();
 | |
|     A.row(i).setZero();
 | |
|     VERIFY_IS_EQUAL(
 | |
|         std::find_if(A.rowwise().begin(), A.rowwise().end(),
 | |
|                      [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
 | |
|             A.rowwise().begin(),
 | |
|         i);
 | |
|     VERIFY_IS_EQUAL(
 | |
|         std::find_if(A.rowwise().rbegin(), A.rowwise().rend(),
 | |
|                      [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
 | |
|             A.rowwise().rbegin(),
 | |
|         (A.rows() - 1) - i);
 | |
| 
 | |
|     j = internal::random<Index>(0, A.cols() - 1);
 | |
|     A.setRandom();
 | |
|     A.col(j).setZero();
 | |
|     VERIFY_IS_EQUAL(
 | |
|         std::find_if(A.colwise().begin(), A.colwise().end(),
 | |
|                      [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
 | |
|             A.colwise().begin(),
 | |
|         j);
 | |
|     VERIFY_IS_EQUAL(
 | |
|         std::find_if(A.colwise().rbegin(), A.colwise().rend(),
 | |
|                      [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
 | |
|             A.colwise().rbegin(),
 | |
|         (A.cols() - 1) - j);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     using VecOp = VectorwiseOp<ArrayXXi, 0>;
 | |
|     STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value));
 | |
|     STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend())>::value));
 | |
|     STATIC_CHECK(
 | |
|         (internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value));
 | |
|     STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::cend(std::declval<const VecOp&>()))>::value));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // When the compiler sees expression IsContainerTest<C>(0), if C is an
 | |
| // STL-style container class, the first overload of IsContainerTest
 | |
| // will be viable (since both C::iterator* and C::const_iterator* are
 | |
| // valid types and NULL can be implicitly converted to them).  It will
 | |
| // be picked over the second overload as 'int' is a perfect match for
 | |
| // the type of argument 0.  If C::iterator or C::const_iterator is not
 | |
| // a valid type, the first overload is not viable, and the second
 | |
| // overload will be picked.
 | |
| template <class C, class Iterator = decltype(::std::declval<const C&>().begin()),
 | |
|           class = decltype(::std::declval<const C&>().end()), class = decltype(++::std::declval<Iterator&>()),
 | |
|           class = decltype(*::std::declval<Iterator>()), class = typename C::const_iterator>
 | |
| bool IsContainerType(int /* dummy */) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <class C>
 | |
| bool IsContainerType(long /* dummy */) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Rows, int Cols>
 | |
| void test_stl_container_detection(int rows = Rows, int cols = Cols) {
 | |
|   typedef Matrix<Scalar, Rows, 1> VectorType;
 | |
|   typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType;
 | |
|   typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType;
 | |
| 
 | |
|   ColMatrixType A = ColMatrixType::Random(rows, cols);
 | |
|   RowMatrixType B = RowMatrixType::Random(rows, cols);
 | |
| 
 | |
|   Index i = 1;
 | |
| 
 | |
|   using ColMatrixColType = decltype(A.col(i));
 | |
|   using ColMatrixRowType = decltype(A.row(i));
 | |
|   using RowMatrixColType = decltype(B.col(i));
 | |
|   using RowMatrixRowType = decltype(B.row(i));
 | |
| 
 | |
|   // Vector and matrix col/row are valid Stl-style container.
 | |
|   VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
 | |
|   VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
 | |
|   VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
 | |
|   VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
 | |
|   VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
 | |
| 
 | |
|   // But the matrix itself is not a valid Stl-style container.
 | |
|   VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
 | |
|   VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(stl_iterators) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((test_stl_iterators<double, 2, 3>()));
 | |
|     CALL_SUBTEST_1((test_stl_iterators<float, 7, 5>()));
 | |
|     CALL_SUBTEST_1(
 | |
|         (test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(5, 10), internal::random<int>(5, 10))));
 | |
|     CALL_SUBTEST_1(
 | |
|         (test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(10, 200), internal::random<int>(10, 200))));
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_1((test_stl_container_detection<float, 1, 1>()));
 | |
|   CALL_SUBTEST_1((test_stl_container_detection<float, 5, 5>()));
 | |
| }
 | 
