554 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			554 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #ifndef SVD_DEFAULT
 | |
| #error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
 | |
| #endif
 | |
| 
 | |
| #ifndef SVD_FOR_MIN_NORM
 | |
| #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
 | |
| #endif
 | |
| 
 | |
| #ifndef SVD_STATIC_OPTIONS
 | |
| #error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h
 | |
| #endif
 | |
| 
 | |
| #include "svd_fill.h"
 | |
| #include "solverbase.h"
 | |
| 
 | |
| // Check that the matrix m is properly reconstructed and that the U and V factors are unitary
 | |
| // The SVD must have already been computed.
 | |
| template <typename SvdType, typename MatrixType>
 | |
| void svd_check_full(const MatrixType& m, const SvdType& svd) {
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
 | |
|   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
 | |
| 
 | |
|   MatrixType sigma = MatrixType::Zero(rows, cols);
 | |
|   sigma.diagonal() = svd.singularValues().template cast<Scalar>();
 | |
|   MatrixUType u = svd.matrixU();
 | |
|   MatrixVType v = svd.matrixV();
 | |
|   RealScalar scaling = m.cwiseAbs().maxCoeff();
 | |
|   if (scaling < (std::numeric_limits<RealScalar>::min)()) {
 | |
|     VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
 | |
|   } else {
 | |
|     VERIFY_IS_APPROX(m / scaling, u * (sigma / scaling) * v.adjoint());
 | |
|   }
 | |
|   VERIFY_IS_UNITARY(u);
 | |
|   VERIFY_IS_UNITARY(v);
 | |
| }
 | |
| 
 | |
| // Compare partial SVD defined by computationOptions to a full SVD referenceSvd
 | |
| template <typename MatrixType, typename SvdType, int Options>
 | |
| void svd_compare_to_full(const MatrixType& m, const SvdType& referenceSvd) {
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
|   Index diagSize = (std::min)(rows, cols);
 | |
|   RealScalar prec = test_precision<RealScalar>();
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixType, Options) svd(m);
 | |
| 
 | |
|   VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
 | |
| 
 | |
|   if (Options & (ComputeFullV | ComputeThinV)) {
 | |
|     VERIFY((svd.matrixV().adjoint() * svd.matrixV()).isIdentity(prec));
 | |
|     VERIFY_IS_APPROX(svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() *
 | |
|                          svd.matrixV().leftCols(diagSize).adjoint(),
 | |
|                      referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() *
 | |
|                          referenceSvd.matrixV().leftCols(diagSize).adjoint());
 | |
|   }
 | |
| 
 | |
|   if (Options & (ComputeFullU | ComputeThinU)) {
 | |
|     VERIFY((svd.matrixU().adjoint() * svd.matrixU()).isIdentity(prec));
 | |
|     VERIFY_IS_APPROX(svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() *
 | |
|                          svd.matrixU().leftCols(diagSize).adjoint(),
 | |
|                      referenceSvd.matrixU().leftCols(diagSize) *
 | |
|                          referenceSvd.singularValues().cwiseAbs2().asDiagonal() *
 | |
|                          referenceSvd.matrixU().leftCols(diagSize).adjoint());
 | |
|   }
 | |
| 
 | |
|   // The following checks are not critical.
 | |
|   // For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product
 | |
|   // implementation will be used and the resulting 'V' factor might be significantly different when the SVD
 | |
|   // decomposition is not unique, especially with single precision float.
 | |
|   ++g_test_level;
 | |
|   if (Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
 | |
|   if (Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
 | |
|   if (Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
 | |
|   if (Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
 | |
|   --g_test_level;
 | |
| }
 | |
| 
 | |
| template <typename SvdType, typename MatrixType>
 | |
| void svd_least_square(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
 | |
| 
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
 | |
|   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
 | |
| 
 | |
|   RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
 | |
|   SvdType svd(m);
 | |
| 
 | |
|   if (internal::is_same<RealScalar, double>::value)
 | |
|     svd.setThreshold(RealScalar(1e-8));
 | |
|   else if (internal::is_same<RealScalar, float>::value)
 | |
|     svd.setThreshold(RealScalar(2e-4));
 | |
| 
 | |
|   SolutionType x = svd.solve(rhs);
 | |
| 
 | |
|   RealScalar residual = (m * x - rhs).norm();
 | |
|   RealScalar rhs_norm = rhs.norm();
 | |
|   if (!test_isMuchSmallerThan(residual, rhs.norm())) {
 | |
|     // ^^^ If the residual is very small, then we have an exact solution, so we are already good.
 | |
| 
 | |
|     // evaluate normal equation which works also for least-squares solutions
 | |
|     if (internal::is_same<RealScalar, double>::value || svd.rank() == m.diagonal().size()) {
 | |
|       using std::sqrt;
 | |
|       // This test is not stable with single precision.
 | |
|       // This is probably because squaring m signicantly affects the precision.
 | |
|       if (internal::is_same<RealScalar, float>::value) ++g_test_level;
 | |
| 
 | |
|       VERIFY_IS_APPROX(m.adjoint() * (m * x), m.adjoint() * rhs);
 | |
| 
 | |
|       if (internal::is_same<RealScalar, float>::value) --g_test_level;
 | |
|     }
 | |
| 
 | |
|     // Check that there is no significantly better solution in the neighborhood of x
 | |
|     for (Index k = 0; k < x.rows(); ++k) {
 | |
|       using std::abs;
 | |
| 
 | |
|       SolutionType y(x);
 | |
|       y.row(k) = (RealScalar(1) + 2 * NumTraits<RealScalar>::epsilon()) * x.row(k);
 | |
|       RealScalar residual_y = (m * y - rhs).norm();
 | |
|       VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) || residual < residual_y);
 | |
|       if (internal::is_same<RealScalar, float>::value) ++g_test_level;
 | |
|       VERIFY(test_isApprox(residual_y, residual) || residual < residual_y);
 | |
|       if (internal::is_same<RealScalar, float>::value) --g_test_level;
 | |
| 
 | |
|       y.row(k) = (RealScalar(1) - 2 * NumTraits<RealScalar>::epsilon()) * x.row(k);
 | |
|       residual_y = (m * y - rhs).norm();
 | |
|       VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) || residual < residual_y);
 | |
|       if (internal::is_same<RealScalar, float>::value) ++g_test_level;
 | |
|       VERIFY(test_isApprox(residual_y, residual) || residual < residual_y);
 | |
|       if (internal::is_same<RealScalar, float>::value) --g_test_level;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // check minimal norm solutions, the input matrix m is only used to recover problem size
 | |
| template <typename MatrixType, int Options>
 | |
| void svd_min_norm(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime };
 | |
| 
 | |
|   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
 | |
| 
 | |
|   // generate a full-rank m x n problem with m<n
 | |
|   enum {
 | |
|     RankAtCompileTime2 = ColsAtCompileTime == Dynamic ? Dynamic : (ColsAtCompileTime) / 2 + 1,
 | |
|     RowsAtCompileTime3 = ColsAtCompileTime == Dynamic ? Dynamic : ColsAtCompileTime + 1
 | |
|   };
 | |
|   typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
 | |
|   typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
 | |
|   typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
 | |
|   Index rank = RankAtCompileTime2 == Dynamic ? internal::random<Index>(1, cols) : Index(RankAtCompileTime2);
 | |
|   MatrixType2 m2(rank, cols);
 | |
|   int guard = 0;
 | |
|   do {
 | |
|     m2.setRandom();
 | |
|   } while (SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank() != rank && (++guard) < 10);
 | |
|   VERIFY(guard < 10);
 | |
| 
 | |
|   RhsType2 rhs2 = RhsType2::Random(rank);
 | |
|   // use QR to find a reference minimal norm solution
 | |
|   HouseholderQR<MatrixType2T> qr(m2.adjoint());
 | |
|   Matrix<Scalar, Dynamic, 1> tmp =
 | |
|       qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().adjoint().solve(rhs2);
 | |
|   tmp.conservativeResize(cols);
 | |
|   tmp.tail(cols - rank).setZero();
 | |
|   SolutionType x21 = qr.householderQ() * tmp;
 | |
|   // now check with SVD
 | |
|   SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2);
 | |
|   SolutionType x22 = svd2.solve(rhs2);
 | |
|   VERIFY_IS_APPROX(m2 * x21, rhs2);
 | |
|   VERIFY_IS_APPROX(m2 * x22, rhs2);
 | |
|   VERIFY_IS_APPROX(x21, x22);
 | |
| 
 | |
|   // Now check with a rank deficient matrix
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
 | |
|   Index rows3 = RowsAtCompileTime3 == Dynamic ? internal::random<Index>(rank + 1, 2 * cols) : Index(RowsAtCompileTime3);
 | |
|   Matrix<Scalar, RowsAtCompileTime3, Dynamic> C = Matrix<Scalar, RowsAtCompileTime3, Dynamic>::Random(rows3, rank);
 | |
|   MatrixType3 m3 = C * m2;
 | |
|   RhsType3 rhs3 = C * rhs2;
 | |
|   SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3);
 | |
|   SolutionType x3 = svd3.solve(rhs3);
 | |
|   VERIFY_IS_APPROX(m3 * x3, rhs3);
 | |
|   VERIFY_IS_APPROX(m3 * x21, rhs3);
 | |
|   VERIFY_IS_APPROX(m2 * x3, rhs2);
 | |
|   VERIFY_IS_APPROX(x21, x3);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, typename SolverType>
 | |
| void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
 | |
|   Index rows, cols, cols2;
 | |
| 
 | |
|   rows = m.rows();
 | |
|   cols = m.cols();
 | |
| 
 | |
|   if (MatrixType::ColsAtCompileTime == Dynamic) {
 | |
|     cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   } else {
 | |
|     cols2 = cols;
 | |
|   }
 | |
|   typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType;
 | |
|   check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
 | |
| }
 | |
| 
 | |
| // work around stupid msvc error when constructing at compile time an expression that involves
 | |
| // a division by zero, even if the numeric type has floating point
 | |
| template <typename Scalar>
 | |
| EIGEN_DONT_INLINE Scalar zero() {
 | |
|   return Scalar(0);
 | |
| }
 | |
| 
 | |
| // workaround aggressive optimization in ICC
 | |
| template <typename T>
 | |
| EIGEN_DONT_INLINE T sub(T a, T b) {
 | |
|   return a - b;
 | |
| }
 | |
| 
 | |
| // This function verifies we don't iterate infinitely on nan/inf values,
 | |
| // and that info() returns InvalidInput.
 | |
| template <typename MatrixType>
 | |
| void svd_inf_nan() {
 | |
|   SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd;
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   Scalar some_inf = Scalar(1) / zero<Scalar>();
 | |
|   VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
 | |
|   svd.compute(MatrixType::Constant(10, 10, some_inf));
 | |
|   VERIFY(svd.info() == InvalidInput);
 | |
| 
 | |
|   Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
 | |
|   VERIFY(nan != nan);
 | |
|   svd.compute(MatrixType::Constant(10, 10, nan));
 | |
|   VERIFY(svd.info() == InvalidInput);
 | |
| 
 | |
|   MatrixType m = MatrixType::Zero(10, 10);
 | |
|   m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = some_inf;
 | |
|   svd.compute(m);
 | |
|   VERIFY(svd.info() == InvalidInput);
 | |
| 
 | |
|   m = MatrixType::Zero(10, 10);
 | |
|   m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = nan;
 | |
|   svd.compute(m);
 | |
|   VERIFY(svd.info() == InvalidInput);
 | |
| 
 | |
|   // regression test for bug 791
 | |
|   m.resize(3, 3);
 | |
|   m << 0, 2 * NumTraits<Scalar>::epsilon(), 0.5, 0, -0.5, 0, nan, 0, 0;
 | |
|   svd.compute(m);
 | |
|   VERIFY(svd.info() == InvalidInput);
 | |
| 
 | |
|   Scalar min = (std::numeric_limits<Scalar>::min)();
 | |
|   m.resize(4, 4);
 | |
|   m << 1, 0, 0, 0, 0, 3, 1, min, 1, 0, 1, nan, 0, nan, nan, 0;
 | |
|   svd.compute(m);
 | |
|   VERIFY(svd.info() == InvalidInput);
 | |
| }
 | |
| 
 | |
| // Regression test for bug 286: JacobiSVD loops indefinitely with some
 | |
| // matrices containing denormal numbers.
 | |
| template <typename>
 | |
| void svd_underoverflow() {
 | |
| #if defined __INTEL_COMPILER
 | |
| // shut up warning #239: floating point underflow
 | |
| #pragma warning push
 | |
| #pragma warning disable 239
 | |
| #endif
 | |
|   Matrix2d M;
 | |
|   M << -7.90884e-313, -4.94e-324, 0, 5.60844e-313;
 | |
|   SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd;
 | |
|   svd.compute(M);
 | |
|   CALL_SUBTEST(svd_check_full(M, svd));
 | |
| 
 | |
|   // Check all 2x2 matrices made with the following coefficients:
 | |
|   VectorXd value_set(9);
 | |
|   value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
 | |
|   Array4i id(0, 0, 0, 0);
 | |
|   int k = 0;
 | |
|   do {
 | |
|     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
 | |
|     svd.compute(M);
 | |
|     CALL_SUBTEST(svd_check_full(M, svd));
 | |
| 
 | |
|     id(k)++;
 | |
|     if (id(k) >= value_set.size()) {
 | |
|       while (k < 3 && id(k) >= value_set.size()) id(++k)++;
 | |
|       id.head(k).setZero();
 | |
|       k = 0;
 | |
|     }
 | |
| 
 | |
|   } while ((id < int(value_set.size())).all());
 | |
| 
 | |
| #if defined __INTEL_COMPILER
 | |
| #pragma warning pop
 | |
| #endif
 | |
| 
 | |
|   // Check for overflow:
 | |
|   Matrix3d M3;
 | |
|   M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307, 3.7841695601406358e+307,
 | |
|       2.4331702789740617e+306, -3.5235707140272905e+307, -8.7190887618028355e+307, -7.3453213709232193e+307,
 | |
|       -2.4367363684472105e+307;
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU | ComputeFullV) svd3;
 | |
|   svd3.compute(M3);  // just check we don't loop indefinitely
 | |
|   CALL_SUBTEST(svd_check_full(M3, svd3));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void svd_all_trivial_2x2(void (*cb)(const MatrixType&)) {
 | |
|   MatrixType M;
 | |
|   VectorXd value_set(3);
 | |
|   value_set << 0, 1, -1;
 | |
|   Array4i id(0, 0, 0, 0);
 | |
|   int k = 0;
 | |
|   do {
 | |
|     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
 | |
| 
 | |
|     cb(M);
 | |
| 
 | |
|     id(k)++;
 | |
|     if (id(k) >= value_set.size()) {
 | |
|       while (k < 3 && id(k) >= value_set.size()) id(++k)++;
 | |
|       id.head(k).setZero();
 | |
|       k = 0;
 | |
|     }
 | |
| 
 | |
|   } while ((id < int(value_set.size())).all());
 | |
| }
 | |
| 
 | |
| template <typename>
 | |
| void svd_preallocate() {
 | |
|   Vector3f v(3.f, 2.f, 1.f);
 | |
|   MatrixXf m = v.asDiagonal();
 | |
| 
 | |
|   internal::set_is_malloc_allowed(false);
 | |
|   VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
 | |
|   SVD_DEFAULT(MatrixXf) svd;
 | |
|   internal::set_is_malloc_allowed(true);
 | |
|   svd.compute(m);
 | |
|   VERIFY_IS_APPROX(svd.singularValues(), v);
 | |
|   VERIFY_RAISES_ASSERT(svd.matrixU());
 | |
|   VERIFY_RAISES_ASSERT(svd.matrixV());
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3, 3);
 | |
|   internal::set_is_malloc_allowed(false);
 | |
|   svd2.compute(m);
 | |
|   internal::set_is_malloc_allowed(true);
 | |
|   VERIFY_IS_APPROX(svd2.singularValues(), v);
 | |
|   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
 | |
|   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
 | |
|   internal::set_is_malloc_allowed(false);
 | |
|   svd2.compute(m);
 | |
|   internal::set_is_malloc_allowed(true);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int QRPreconditioner = 0>
 | |
| void svd_verify_assert_full_only(const MatrixType& input = MatrixType()) {
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime };
 | |
| 
 | |
|   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
 | |
|   RhsType rhs = RhsType::Zero(input.rows());
 | |
|   MatrixType m(input.rows(), input.cols());
 | |
|   svd_fill_random(m);
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0;
 | |
|   VERIFY_RAISES_ASSERT((svd0.matrixU()));
 | |
|   VERIFY_RAISES_ASSERT((svd0.singularValues()));
 | |
|   VERIFY_RAISES_ASSERT((svd0.matrixV()));
 | |
|   VERIFY_RAISES_ASSERT((svd0.solve(rhs)));
 | |
|   VERIFY_RAISES_ASSERT((svd0.transpose().solve(rhs)));
 | |
|   VERIFY_RAISES_ASSERT((svd0.adjoint().solve(rhs)));
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m);
 | |
|   VERIFY_RAISES_ASSERT((svd1.matrixU()));
 | |
|   VERIFY_RAISES_ASSERT((svd1.matrixV()));
 | |
|   VERIFY_RAISES_ASSERT((svd1.solve(rhs)));
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m);
 | |
|   VERIFY_RAISES_ASSERT((svdFullU.matrixV()));
 | |
|   VERIFY_RAISES_ASSERT((svdFullU.solve(rhs)));
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m);
 | |
|   VERIFY_RAISES_ASSERT((svdFullV.matrixU()));
 | |
|   VERIFY_RAISES_ASSERT((svdFullV.solve(rhs)));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int QRPreconditioner = 0>
 | |
| void svd_verify_assert(const MatrixType& input = MatrixType()) {
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime };
 | |
|   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
 | |
|   RhsType rhs = RhsType::Zero(input.rows());
 | |
|   MatrixType m(input.rows(), input.cols());
 | |
|   svd_fill_random(m);
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m);
 | |
|   VERIFY_RAISES_ASSERT((svdThinU.matrixV()));
 | |
|   VERIFY_RAISES_ASSERT((svdThinU.solve(rhs)));
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m);
 | |
|   VERIFY_RAISES_ASSERT((svdThinV.matrixU()));
 | |
|   VERIFY_RAISES_ASSERT((svdThinV.solve(rhs)));
 | |
| 
 | |
|   svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int Options>
 | |
| void svd_compute_checks(const MatrixType& m) {
 | |
|   typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType;
 | |
| 
 | |
|   enum {
 | |
|     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
 | |
|     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
 | |
|     DiagAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
 | |
|     MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime,
 | |
|     MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime,
 | |
|     MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime,
 | |
|     MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime
 | |
|   };
 | |
| 
 | |
|   SVDType staticSvd(m);
 | |
| 
 | |
|   VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime);
 | |
|   VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime);
 | |
|   if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime);
 | |
|   if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime);
 | |
|   if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime);
 | |
|   if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime);
 | |
| 
 | |
|   if (Options & (ComputeThinU | ComputeFullU))
 | |
|     VERIFY(staticSvd.computeU());
 | |
|   else
 | |
|     VERIFY(!staticSvd.computeU());
 | |
|   if (Options & (ComputeThinV | ComputeFullV))
 | |
|     VERIFY(staticSvd.computeV());
 | |
|   else
 | |
|     VERIFY(!staticSvd.computeV());
 | |
| 
 | |
|   if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary());
 | |
|   if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary());
 | |
| 
 | |
|   if (staticSvd.computeU() && staticSvd.computeV()) {
 | |
|     svd_test_solvers(m, staticSvd);
 | |
|     svd_least_square<SVDType, MatrixType>(m);
 | |
|     // svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner
 | |
|     if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner) svd_min_norm<MatrixType, Options>(m);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int QRPreconditioner = 0>
 | |
| void svd_thin_option_checks(const MatrixType& input) {
 | |
|   MatrixType m(input.rows(), input.cols());
 | |
|   svd_fill_random(m);
 | |
| 
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner>(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU>(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV>(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m);
 | |
| 
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m);
 | |
| 
 | |
|   typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType;
 | |
|   FullSvdType fullSvd(m);
 | |
|   svd_check_full(m, fullSvd);
 | |
|   svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int QRPreconditioner = 0>
 | |
| void svd_option_checks_full_only(const MatrixType& input) {
 | |
|   MatrixType m(input.rows(), input.cols());
 | |
|   svd_fill_random(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
 | |
|   svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
 | |
| 
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
 | |
|   svd_check_full(m, fullSvd);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int QRPreconditioner = 0>
 | |
| void svd_check_max_size_matrix(int initialRows, int initialCols) {
 | |
|   enum {
 | |
|     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
 | |
|     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
 | |
|   };
 | |
| 
 | |
|   int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime);
 | |
|   int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime);
 | |
| 
 | |
|   MatrixType m(rows, cols);
 | |
|   svd_fill_random(m);
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m);
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m);
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m);
 | |
|   SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
 | |
| 
 | |
|   MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime);
 | |
|   svd_fill_random(n);
 | |
|   thinSvd.compute(n);
 | |
|   mixedSvd1.compute(n);
 | |
|   mixedSvd2.compute(n);
 | |
|   fullSvd.compute(n);
 | |
| 
 | |
|   MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1);
 | |
| 
 | |
|   VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix));
 | |
|   VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix));
 | |
|   VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix));
 | |
|   VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix));
 | |
| }
 | |
| 
 | |
| template <typename SvdType, typename MatrixType>
 | |
| void svd_verify_constructor_options_assert(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   Index rows = m.rows();
 | |
| 
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
 | |
| 
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
 | |
|   RhsType rhs(rows);
 | |
|   svd_fill_random(rhs);
 | |
|   SvdType svd;
 | |
|   VERIFY_RAISES_ASSERT(svd.matrixU())
 | |
|   VERIFY_RAISES_ASSERT(svd.singularValues())
 | |
|   VERIFY_RAISES_ASSERT(svd.matrixV())
 | |
|   VERIFY_RAISES_ASSERT(svd.solve(rhs))
 | |
|   VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
 | |
|   VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
 | |
| }
 | |
| 
 | |
| #undef SVD_DEFAULT
 | |
| #undef SVD_FOR_MIN_NORM
 | |
| #undef SVD_STATIC_OPTIONS
 | 
