110 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| template <typename T>
 | |
| Array<T, 4, 1> four_denorms();
 | |
| 
 | |
| template <>
 | |
| Array4f four_denorms() {
 | |
|   return Array4f(5.60844e-39f, -5.60844e-39f, 4.94e-44f, -4.94e-44f);
 | |
| }
 | |
| template <>
 | |
| Array4d four_denorms() {
 | |
|   return Array4d(5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324);
 | |
| }
 | |
| template <typename T>
 | |
| Array<T, 4, 1> four_denorms() {
 | |
|   return four_denorms<double>().cast<T>();
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void svd_fill_random(MatrixType &m, int Option = 0) {
 | |
|   using std::pow;
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   Index diagSize = (std::min)(m.rows(), m.cols());
 | |
|   RealScalar s = std::numeric_limits<RealScalar>::max_exponent10 / 4;
 | |
|   s = internal::random<RealScalar>(1, s);
 | |
|   Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(diagSize);
 | |
|   for (Index k = 0; k < diagSize; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s));
 | |
| 
 | |
|   bool dup = internal::random<int>(0, 10) < 3;
 | |
|   bool unit_uv =
 | |
|       internal::random<int>(0, 10) < (dup ? 7 : 3);  // if we duplicate some diagonal entries, then increase the chance
 | |
|                                                      // to preserve them using unitary U and V factors
 | |
| 
 | |
|   // duplicate some singular values
 | |
|   if (dup) {
 | |
|     Index n = internal::random<Index>(0, d.size() - 1);
 | |
|     for (Index i = 0; i < n; ++i)
 | |
|       d(internal::random<Index>(0, d.size() - 1)) = d(internal::random<Index>(0, d.size() - 1));
 | |
|   }
 | |
| 
 | |
|   Matrix<Scalar, Dynamic, Dynamic> U(m.rows(), diagSize);
 | |
|   Matrix<Scalar, Dynamic, Dynamic> VT(diagSize, m.cols());
 | |
|   if (unit_uv) {
 | |
|     // in very rare cases let's try with a pure diagonal matrix
 | |
|     if (internal::random<int>(0, 10) < 1) {
 | |
|       U.setIdentity();
 | |
|       VT.setIdentity();
 | |
|     } else {
 | |
|       createRandomPIMatrixOfRank(diagSize, U.rows(), U.cols(), U);
 | |
|       createRandomPIMatrixOfRank(diagSize, VT.rows(), VT.cols(), VT);
 | |
|     }
 | |
|   } else {
 | |
|     U.setRandom();
 | |
|     VT.setRandom();
 | |
|   }
 | |
| 
 | |
|   Matrix<Scalar, Dynamic, 1> samples(9);
 | |
|   samples << Scalar(0), four_denorms<RealScalar>(), -RealScalar(1) / NumTraits<RealScalar>::highest(),
 | |
|       RealScalar(1) / NumTraits<RealScalar>::highest(), (std::numeric_limits<RealScalar>::min)(),
 | |
|       pow((std::numeric_limits<RealScalar>::min)(), RealScalar(0.8));
 | |
| 
 | |
|   if (Option == Symmetric) {
 | |
|     m = U * d.asDiagonal() * U.transpose();
 | |
| 
 | |
|     // randomly nullify some rows/columns
 | |
|     {
 | |
|       Index count = internal::random<Index>(-diagSize, diagSize);
 | |
|       for (Index k = 0; k < count; ++k) {
 | |
|         Index i = internal::random<Index>(0, diagSize - 1);
 | |
|         m.row(i).setZero();
 | |
|         m.col(i).setZero();
 | |
|       }
 | |
|       if (count < 0)
 | |
|         // (partly) cancel some coeffs
 | |
|         if (!(dup && unit_uv)) {
 | |
|           Index n = internal::random<Index>(0, m.size() - 1);
 | |
|           for (Index k = 0; k < n; ++k) {
 | |
|             Index i = internal::random<Index>(0, m.rows() - 1);
 | |
|             Index j = internal::random<Index>(0, m.cols() - 1);
 | |
|             m(j, i) = m(i, j) = samples(internal::random<Index>(0, samples.size() - 1));
 | |
|             if (NumTraits<Scalar>::IsComplex)
 | |
|               *(&numext::real_ref(m(j, i)) + 1) = *(&numext::real_ref(m(i, j)) + 1) =
 | |
|                   samples.real()(internal::random<Index>(0, samples.size() - 1));
 | |
|           }
 | |
|         }
 | |
|     }
 | |
|   } else {
 | |
|     m = U * d.asDiagonal() * VT;
 | |
|     // (partly) cancel some coeffs
 | |
|     if (!(dup && unit_uv)) {
 | |
|       Index n = internal::random<Index>(0, m.size() - 1);
 | |
|       for (Index k = 0; k < n; ++k) {
 | |
|         Index i = internal::random<Index>(0, m.rows() - 1);
 | |
|         Index j = internal::random<Index>(0, m.cols() - 1);
 | |
|         m(i, j) = samples(internal::random<Index>(0, samples.size() - 1));
 | |
|         if (NumTraits<Scalar>::IsComplex)
 | |
|           *(&numext::real_ref(m(i, j)) + 1) = samples.real()(internal::random<Index>(0, samples.size() - 1));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | 
