383 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			383 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2023
 | |
| // Alejandro Acosta    Codeplay Software Ltd.
 | |
| // Contact: <eigen@codeplay.com>
 | |
| // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #define EIGEN_TEST_NO_LONGDOUBLE
 | |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
 | |
| 
 | |
| #define EIGEN_USE_SYCL
 | |
| #include "main.h"
 | |
| 
 | |
| #include <Eigen/Dense>
 | |
| 
 | |
| template <bool verifyNan = false, bool singleTask = false, typename Operation, typename Input, typename Output>
 | |
| void run_and_verify(Operation& ope, size_t num_elements, const Input& in, Output& out) {
 | |
|   Output out_gpu, out_cpu;
 | |
|   out_gpu = out_cpu = out;
 | |
|   auto queue = sycl::queue{sycl::default_selector_v};
 | |
| 
 | |
|   auto in_size_bytes = sizeof(typename Input::Scalar) * in.size();
 | |
|   auto out_size_bytes = sizeof(typename Output::Scalar) * out.size();
 | |
|   auto in_d = sycl::malloc_device<typename Input::Scalar>(in.size(), queue);
 | |
|   auto out_d = sycl::malloc_device<typename Output::Scalar>(out.size(), queue);
 | |
| 
 | |
|   queue.memcpy(in_d, in.data(), in_size_bytes).wait();
 | |
|   queue.memcpy(out_d, out.data(), out_size_bytes).wait();
 | |
| 
 | |
|   if constexpr (singleTask) {
 | |
|     queue.single_task([=]() { ope(in_d, out_d); }).wait();
 | |
|   } else {
 | |
|     queue
 | |
|         .parallel_for(sycl::range{num_elements},
 | |
|                       [=](sycl::id<1> idx) {
 | |
|                         auto id = idx[0];
 | |
|                         ope(id, in_d, out_d);
 | |
|                       })
 | |
|         .wait();
 | |
|   }
 | |
| 
 | |
|   queue.memcpy(out_gpu.data(), out_d, out_size_bytes).wait();
 | |
| 
 | |
|   sycl::free(in_d, queue);
 | |
|   sycl::free(out_d, queue);
 | |
| 
 | |
|   queue.throw_asynchronous();
 | |
| 
 | |
|   // Run on CPU and compare the output
 | |
|   if constexpr (singleTask == 1) {
 | |
|     ope(in.data(), out_cpu.data());
 | |
|   } else {
 | |
|     for (size_t i = 0; i < num_elements; ++i) {
 | |
|       ope(i, in.data(), out_cpu.data());
 | |
|     }
 | |
|   }
 | |
|   if constexpr (verifyNan) {
 | |
|     VERIFY_IS_CWISE_APPROX(out_gpu, out_cpu);
 | |
|   } else {
 | |
|     VERIFY_IS_APPROX(out_gpu, out_cpu);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_coeff_wise(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     DataType x1(in + i);
 | |
|     DataType x2(in + i + 1);
 | |
|     DataType x3(in + i + 2);
 | |
|     Map<DataType> res(out + i * DataType::MaxSizeAtCompileTime);
 | |
| 
 | |
|     res.array() += (in[0] * x1 + x2).array() * x3.array();
 | |
|   };
 | |
| 
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_complex_sqrt(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     typedef typename DataType::Scalar ComplexType;
 | |
|     typedef typename DataType::Scalar::value_type ValueType;
 | |
|     const int num_special_inputs = 18;
 | |
| 
 | |
|     if (i == 0) {
 | |
|       const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
 | |
|       typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
 | |
|       SpecialInputs special_in;
 | |
|       special_in.setZero();
 | |
|       int idx = 0;
 | |
|       special_in[idx++] = ComplexType(0, 0);
 | |
|       special_in[idx++] = ComplexType(-0, 0);
 | |
|       special_in[idx++] = ComplexType(0, -0);
 | |
|       special_in[idx++] = ComplexType(-0, -0);
 | |
|       const ValueType inf = std::numeric_limits<ValueType>::infinity();
 | |
|       special_in[idx++] = ComplexType(1.0, inf);
 | |
|       special_in[idx++] = ComplexType(nan, inf);
 | |
|       special_in[idx++] = ComplexType(1.0, -inf);
 | |
|       special_in[idx++] = ComplexType(nan, -inf);
 | |
|       special_in[idx++] = ComplexType(-inf, 1.0);
 | |
|       special_in[idx++] = ComplexType(inf, 1.0);
 | |
|       special_in[idx++] = ComplexType(-inf, -1.0);
 | |
|       special_in[idx++] = ComplexType(inf, -1.0);
 | |
|       special_in[idx++] = ComplexType(-inf, nan);
 | |
|       special_in[idx++] = ComplexType(inf, nan);
 | |
|       special_in[idx++] = ComplexType(1.0, nan);
 | |
|       special_in[idx++] = ComplexType(nan, 1.0);
 | |
|       special_in[idx++] = ComplexType(nan, -1.0);
 | |
|       special_in[idx++] = ComplexType(nan, nan);
 | |
| 
 | |
|       Map<SpecialInputs> special_out(out);
 | |
|       special_out = special_in.cwiseSqrt();
 | |
|     }
 | |
| 
 | |
|     DataType x1(in + i);
 | |
|     Map<DataType> res(out + num_special_inputs + i * DataType::MaxSizeAtCompileTime);
 | |
|     res = x1.cwiseSqrt();
 | |
|   };
 | |
|   run_and_verify<true>(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_complex_operators(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     typedef typename DataType::Scalar ComplexType;
 | |
|     typedef typename DataType::Scalar::value_type ValueType;
 | |
|     const int num_scalar_operators = 24;
 | |
|     const int num_vector_operators = 23;  // no unary + operator.
 | |
|     size_t out_idx = i * (num_scalar_operators + num_vector_operators * DataType::MaxSizeAtCompileTime);
 | |
| 
 | |
|     // Scalar operators.
 | |
|     const ComplexType a = in[i];
 | |
|     const ComplexType b = in[i + 1];
 | |
| 
 | |
|     out[out_idx++] = +a;
 | |
|     out[out_idx++] = -a;
 | |
| 
 | |
|     out[out_idx++] = a + b;
 | |
|     out[out_idx++] = a + numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) + b;
 | |
|     out[out_idx++] = a - b;
 | |
|     out[out_idx++] = a - numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) - b;
 | |
|     out[out_idx++] = a * b;
 | |
|     out[out_idx++] = a * numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) * b;
 | |
|     out[out_idx++] = a / b;
 | |
|     out[out_idx++] = a / numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) / b;
 | |
| 
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] += b;
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] -= b;
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] *= b;
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] /= b;
 | |
| 
 | |
|     const ComplexType true_value = ComplexType(ValueType(1), ValueType(0));
 | |
|     const ComplexType false_value = ComplexType(ValueType(0), ValueType(0));
 | |
|     out[out_idx++] = (a == b ? true_value : false_value);
 | |
|     out[out_idx++] = (a == numext::real(b) ? true_value : false_value);
 | |
|     out[out_idx++] = (numext::real(a) == b ? true_value : false_value);
 | |
|     out[out_idx++] = (a != b ? true_value : false_value);
 | |
|     out[out_idx++] = (a != numext::real(b) ? true_value : false_value);
 | |
|     out[out_idx++] = (numext::real(a) != b ? true_value : false_value);
 | |
| 
 | |
|     // Vector versions.
 | |
|     DataType x1(in + i);
 | |
|     DataType x2(in + i + 1);
 | |
|     const int res_size = DataType::MaxSizeAtCompileTime * num_scalar_operators;
 | |
|     const int size = DataType::MaxSizeAtCompileTime;
 | |
|     int block_idx = 0;
 | |
| 
 | |
|     Map<VectorX<ComplexType>> res(out + out_idx, res_size);
 | |
|     res.segment(block_idx, size) = -x1;
 | |
|     block_idx += size;
 | |
| 
 | |
|     res.segment(block_idx, size) = x1 + x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1 + x2.real();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real() + x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1 - x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1 - x2.real();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real() - x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() * x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() * x2.real().array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real().array() * x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() / x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() / x2.real().array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real().array() / x2.array();
 | |
|     block_idx += size;
 | |
| 
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size) += x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size) -= x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size).array() *= x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size).array() /= x2.array();
 | |
|     block_idx += size;
 | |
| 
 | |
|     const DataType true_vector = DataType::Constant(true_value);
 | |
|     const DataType false_vector = DataType::Constant(false_value);
 | |
|     res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector);
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector);
 | |
|     block_idx += size;
 | |
|     //        res.segment(block_idx, size) = (x1.real() == x2) ? true_vector : false_vector;
 | |
|     //        block_idx += size;
 | |
|     res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector);
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector);
 | |
|     block_idx += size;
 | |
|     //        res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector);
 | |
|     //        block_idx += size;
 | |
|   };
 | |
|   run_and_verify<true>(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_redux(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     int N = 10;
 | |
|     DataType x1(in + i);
 | |
|     out[i * N + 0] = x1.minCoeff();
 | |
|     out[i * N + 1] = x1.maxCoeff();
 | |
|     out[i * N + 2] = x1.sum();
 | |
|     out[i * N + 3] = x1.prod();
 | |
|     out[i * N + 4] = x1.matrix().squaredNorm();
 | |
|     out[i * N + 5] = x1.matrix().norm();
 | |
|     out[i * N + 6] = x1.colwise().sum().maxCoeff();
 | |
|     out[i * N + 7] = x1.rowwise().maxCoeff().sum();
 | |
|     out[i * N + 8] = x1.matrix().colwise().squaredNorm().sum();
 | |
|   };
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_replicate(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     DataType x1(in + i);
 | |
|     int step = x1.size() * 4;
 | |
|     int stride = 3 * step;
 | |
| 
 | |
|     typedef Map<Array<typename DataType::Scalar, Dynamic, Dynamic>> MapType;
 | |
|     MapType(out + i * stride + 0 * step, x1.rows() * 2, x1.cols() * 2) = x1.replicate(2, 2);
 | |
|     MapType(out + i * stride + 1 * step, x1.rows() * 3, x1.cols()) = in[i] * x1.colwise().replicate(3);
 | |
|     MapType(out + i * stride + 2 * step, x1.rows(), x1.cols() * 3) = in[i] * x1.rowwise().replicate(3);
 | |
|   };
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType1, typename DataType2, typename Input, typename Output>
 | |
| void test_product(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     typedef Matrix<typename DataType1::Scalar, DataType1::RowsAtCompileTime, DataType2::ColsAtCompileTime> DataType3;
 | |
|     DataType1 x1(in + i);
 | |
|     DataType2 x2(in + i + 1);
 | |
|     Map<DataType3> res(out + i * DataType3::MaxSizeAtCompileTime);
 | |
|     res += in[i] * x1 * x2;
 | |
|   };
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType1, typename DataType2, typename Input, typename Output>
 | |
| void test_diagonal(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     DataType1 x1(in + i);
 | |
|     Map<DataType2> res(out + i * DataType2::MaxSizeAtCompileTime);
 | |
|     res += x1.diagonal();
 | |
|   };
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_eigenvalues_direct(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     typedef Matrix<typename DataType::Scalar, DataType::RowsAtCompileTime, 1> Vec;
 | |
|     DataType M(in + i);
 | |
|     Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime);
 | |
|     DataType A = M * M.adjoint();
 | |
|     SelfAdjointEigenSolver<DataType> eig;
 | |
|     eig.computeDirect(A);
 | |
|     res = eig.eigenvalues();
 | |
|   };
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_matrix_inverse(size_t num_elements, const Input& in, Output& out) {
 | |
|   auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     using namespace Eigen;
 | |
|     DataType M(in + i);
 | |
|     Map<DataType> res(out + i * DataType::MaxSizeAtCompileTime);
 | |
|     res = M.inverse();
 | |
|   };
 | |
|   run_and_verify(operation, num_elements, in, out);
 | |
| }
 | |
| 
 | |
| template <typename DataType, typename Input, typename Output>
 | |
| void test_numeric_limits(const Input& in, Output& out) {
 | |
|   auto operation = [](const typename DataType::Scalar* in, typename DataType::Scalar* out) {
 | |
|     EIGEN_UNUSED_VARIABLE(in)
 | |
|     out[0] = numext::numeric_limits<float>::epsilon();
 | |
|     out[1] = (numext::numeric_limits<float>::max)();
 | |
|     out[2] = (numext::numeric_limits<float>::min)();
 | |
|     out[3] = numext::numeric_limits<float>::infinity();
 | |
|     out[4] = numext::numeric_limits<float>::quiet_NaN();
 | |
|   };
 | |
|   run_and_verify<true, true>(operation, 1, in, out);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(sycl_basic) {
 | |
|   Eigen::VectorXf in, out;
 | |
|   Eigen::VectorXcf cfin, cfout;
 | |
| 
 | |
|   constexpr size_t num_elements = 100;
 | |
|   constexpr size_t data_size = num_elements * 512;
 | |
|   in.setRandom(data_size);
 | |
|   out.setConstant(data_size, -1);
 | |
|   cfin.setRandom(data_size);
 | |
|   cfout.setConstant(data_size, -1);
 | |
| 
 | |
|   CALL_SUBTEST(test_coeff_wise<Vector3f>(num_elements, in, out));
 | |
|   CALL_SUBTEST(test_coeff_wise<Array44f>(num_elements, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(test_complex_operators<Vector3cf>(num_elements, cfin, cfout));
 | |
|   CALL_SUBTEST(test_complex_sqrt<Vector3cf>(num_elements, cfin, cfout));
 | |
| 
 | |
|   CALL_SUBTEST(test_redux<Array4f>(num_elements, in, out));
 | |
|   CALL_SUBTEST(test_redux<Matrix3f>(num_elements, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(test_replicate<Array4f>(num_elements, in, out));
 | |
|   CALL_SUBTEST(test_replicate<Array33f>(num_elements, in, out));
 | |
| 
 | |
|   auto test_prod_mm = [&]() { test_product<Matrix3f, Matrix3f>(num_elements, in, out); };
 | |
|   auto test_prod_mv = [&]() { test_product<Matrix4f, Vector4f>(num_elements, in, out); };
 | |
|   CALL_SUBTEST(test_prod_mm());
 | |
|   CALL_SUBTEST(test_prod_mv());
 | |
| 
 | |
|   auto test_diagonal_mv3f = [&]() { test_diagonal<Matrix3f, Vector3f>(num_elements, in, out); };
 | |
|   auto test_diagonal_mv4f = [&]() { test_diagonal<Matrix4f, Vector4f>(num_elements, in, out); };
 | |
|   CALL_SUBTEST(test_diagonal_mv3f());
 | |
|   CALL_SUBTEST(test_diagonal_mv4f());
 | |
| 
 | |
|   CALL_SUBTEST(test_eigenvalues_direct<Matrix3f>(num_elements, in, out));
 | |
|   CALL_SUBTEST(test_eigenvalues_direct<Matrix2f>(num_elements, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(test_matrix_inverse<Matrix2f>(num_elements, in, out));
 | |
|   CALL_SUBTEST(test_matrix_inverse<Matrix3f>(num_elements, in, out));
 | |
|   CALL_SUBTEST(test_matrix_inverse<Matrix4f>(num_elements, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(test_numeric_limits<Vector3f>(in, out));
 | |
| }
 | 
