311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void matrixVisitor(const MatrixType& p) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   Index rows = p.rows();
 | |
|   Index cols = p.cols();
 | |
| 
 | |
|   // construct a random matrix where all coefficients are different
 | |
|   MatrixType m;
 | |
|   m = MatrixType::Random(rows, cols);
 | |
|   for (Index i = 0; i < m.size(); i++)
 | |
|     for (Index i2 = 0; i2 < i; i2++)
 | |
|       while (numext::equal_strict(m(i), m(i2)))  // yes, strict equality
 | |
|         m(i) = internal::random<Scalar>();
 | |
| 
 | |
|   Scalar minc = Scalar(1000), maxc = Scalar(-1000);
 | |
|   Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0;
 | |
|   for (Index j = 0; j < cols; j++)
 | |
|     for (Index i = 0; i < rows; i++) {
 | |
|       if (m(i, j) < minc) {
 | |
|         minc = m(i, j);
 | |
|         minrow = i;
 | |
|         mincol = j;
 | |
|       }
 | |
|       if (m(i, j) > maxc) {
 | |
|         maxc = m(i, j);
 | |
|         maxrow = i;
 | |
|         maxcol = j;
 | |
|       }
 | |
|     }
 | |
|   Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
 | |
|   Scalar eigen_minc, eigen_maxc;
 | |
|   eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol);
 | |
|   eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol);
 | |
|   VERIFY(minrow == eigen_minrow);
 | |
|   VERIFY(maxrow == eigen_maxrow);
 | |
|   VERIFY(mincol == eigen_mincol);
 | |
|   VERIFY(maxcol == eigen_maxcol);
 | |
|   VERIFY_IS_APPROX(minc, eigen_minc);
 | |
|   VERIFY_IS_APPROX(maxc, eigen_maxc);
 | |
|   VERIFY_IS_APPROX(minc, m.minCoeff());
 | |
|   VERIFY_IS_APPROX(maxc, m.maxCoeff());
 | |
| 
 | |
|   eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol);
 | |
|   Index maxrow2 = 0, maxcol2 = 0;
 | |
|   eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow2, &maxcol2);
 | |
|   VERIFY(maxrow2 == eigen_maxrow);
 | |
|   VERIFY(maxcol2 == eigen_maxcol);
 | |
| 
 | |
|   if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
 | |
|     // Test NaN propagation by replacing an element with NaN.
 | |
|     bool stop = false;
 | |
|     for (Index j = 0; j < cols && !stop; ++j) {
 | |
|       for (Index i = 0; i < rows && !stop; ++i) {
 | |
|         if (!(j == mincol && i == minrow) && !(j == maxcol && i == maxrow)) {
 | |
|           m(i, j) = NumTraits<Scalar>::quiet_NaN();
 | |
|           stop = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
 | |
|     eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
 | |
|     VERIFY(minrow == eigen_minrow);
 | |
|     VERIFY(maxrow == eigen_maxrow);
 | |
|     VERIFY(mincol == eigen_mincol);
 | |
|     VERIFY(maxcol == eigen_maxcol);
 | |
|     VERIFY_IS_APPROX(minc, eigen_minc);
 | |
|     VERIFY_IS_APPROX(maxc, eigen_maxc);
 | |
|     VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
 | |
|     VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
 | |
| 
 | |
|     eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
 | |
|     eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
 | |
|     VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
 | |
|     VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
 | |
|     VERIFY((numext::isnan)(eigen_minc));
 | |
|     VERIFY((numext::isnan)(eigen_maxc));
 | |
| 
 | |
|     // Test matrix of all NaNs.
 | |
|     m.fill(NumTraits<Scalar>::quiet_NaN());
 | |
|     eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
 | |
|     eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
 | |
|     VERIFY(eigen_minrow == 0);
 | |
|     VERIFY(eigen_maxrow == 0);
 | |
|     VERIFY(eigen_mincol == 0);
 | |
|     VERIFY(eigen_maxcol == 0);
 | |
|     VERIFY((numext::isnan)(eigen_minc));
 | |
|     VERIFY((numext::isnan)(eigen_maxc));
 | |
| 
 | |
|     eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
 | |
|     eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
 | |
|     VERIFY(eigen_minrow == 0);
 | |
|     VERIFY(eigen_maxrow == 0);
 | |
|     VERIFY(eigen_mincol == 0);
 | |
|     VERIFY(eigen_maxcol == 0);
 | |
|     VERIFY((numext::isnan)(eigen_minc));
 | |
|     VERIFY((numext::isnan)(eigen_maxc));
 | |
| 
 | |
|     eigen_minc = m.template minCoeff<PropagateFast>(&eigen_minrow, &eigen_mincol);
 | |
|     eigen_maxc = m.template maxCoeff<PropagateFast>(&eigen_maxrow, &eigen_maxcol);
 | |
|     VERIFY(eigen_minrow == 0);
 | |
|     VERIFY(eigen_maxrow == 0);
 | |
|     VERIFY(eigen_mincol == 0);
 | |
|     VERIFY(eigen_maxcol == 0);
 | |
|     VERIFY((numext::isnan)(eigen_minc));
 | |
|     VERIFY((numext::isnan)(eigen_maxc));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename VectorType>
 | |
| void vectorVisitor(const VectorType& w) {
 | |
|   typedef typename VectorType::Scalar Scalar;
 | |
| 
 | |
|   Index size = w.size();
 | |
| 
 | |
|   // construct a random vector where all coefficients are different
 | |
|   VectorType v;
 | |
|   v = VectorType::Random(size);
 | |
|   for (Index i = 0; i < size; i++)
 | |
|     for (Index i2 = 0; i2 < i; i2++)
 | |
|       while (v(i) == v(i2))  // yes, ==
 | |
|         v(i) = internal::random<Scalar>();
 | |
| 
 | |
|   Scalar minc = v(0), maxc = v(0);
 | |
|   Index minidx = 0, maxidx = 0;
 | |
|   for (Index i = 0; i < size; i++) {
 | |
|     if (v(i) < minc) {
 | |
|       minc = v(i);
 | |
|       minidx = i;
 | |
|     }
 | |
|     if (v(i) > maxc) {
 | |
|       maxc = v(i);
 | |
|       maxidx = i;
 | |
|     }
 | |
|   }
 | |
|   Index eigen_minidx, eigen_maxidx;
 | |
|   Scalar eigen_minc, eigen_maxc;
 | |
|   eigen_minc = v.minCoeff(&eigen_minidx);
 | |
|   eigen_maxc = v.maxCoeff(&eigen_maxidx);
 | |
|   VERIFY(minidx == eigen_minidx);
 | |
|   VERIFY(maxidx == eigen_maxidx);
 | |
|   VERIFY_IS_APPROX(minc, eigen_minc);
 | |
|   VERIFY_IS_APPROX(maxc, eigen_maxc);
 | |
|   VERIFY_IS_APPROX(minc, v.minCoeff());
 | |
|   VERIFY_IS_APPROX(maxc, v.maxCoeff());
 | |
| 
 | |
|   Index idx0 = internal::random<Index>(0, size - 1);
 | |
|   Index idx1 = eigen_minidx;
 | |
|   Index idx2 = eigen_maxidx;
 | |
|   VectorType v1(v), v2(v);
 | |
|   v1(idx0) = v1(idx1);
 | |
|   v2(idx0) = v2(idx2);
 | |
|   v1.minCoeff(&eigen_minidx);
 | |
|   v2.maxCoeff(&eigen_maxidx);
 | |
|   VERIFY(eigen_minidx == (std::min)(idx0, idx1));
 | |
|   VERIFY(eigen_maxidx == (std::min)(idx0, idx2));
 | |
| 
 | |
|   if (!NumTraits<Scalar>::IsInteger && size > 2) {
 | |
|     // Test NaN propagation by replacing an element with NaN.
 | |
|     for (Index i = 0; i < size; ++i) {
 | |
|       if (i != minidx && i != maxidx) {
 | |
|         v(i) = NumTraits<Scalar>::quiet_NaN();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
 | |
|     eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
 | |
|     VERIFY(minidx == eigen_minidx);
 | |
|     VERIFY(maxidx == eigen_maxidx);
 | |
|     VERIFY_IS_APPROX(minc, eigen_minc);
 | |
|     VERIFY_IS_APPROX(maxc, eigen_maxc);
 | |
|     VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
 | |
|     VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
 | |
| 
 | |
|     eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
 | |
|     eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
 | |
|     VERIFY(minidx != eigen_minidx);
 | |
|     VERIFY(maxidx != eigen_maxidx);
 | |
|     VERIFY((numext::isnan)(eigen_minc));
 | |
|     VERIFY((numext::isnan)(eigen_maxc));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Derived, bool Vectorizable>
 | |
| struct TrackedVisitor {
 | |
|   using Scalar = typename DenseBase<Derived>::Scalar;
 | |
|   static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size;
 | |
|   static constexpr bool RowMajor = Derived::IsRowMajor;
 | |
| 
 | |
|   void init(Scalar v, Index i, Index j) { return this->operator()(v, i, j); }
 | |
|   template <typename Packet>
 | |
|   void initpacket(Packet p, Index i, Index j) {
 | |
|     return this->packet(p, i, j);
 | |
|   }
 | |
|   void operator()(Scalar v, Index i, Index j) {
 | |
|     EIGEN_UNUSED_VARIABLE(v)
 | |
|     visited.emplace_back(i, j);
 | |
|     scalarOps++;
 | |
|   }
 | |
| 
 | |
|   template <typename Packet>
 | |
|   void packet(Packet p, Index i, Index j) {
 | |
|     EIGEN_UNUSED_VARIABLE(p)
 | |
|     for (int k = 0; k < PacketSize; k++)
 | |
|       if (RowMajor)
 | |
|         visited.emplace_back(i, j + k);
 | |
|       else
 | |
|         visited.emplace_back(i + k, j);
 | |
|     vectorOps++;
 | |
|   }
 | |
|   std::vector<std::pair<Index, Index>> visited;
 | |
|   Index scalarOps = 0;
 | |
|   Index vectorOps = 0;
 | |
| };
 | |
| 
 | |
| namespace Eigen {
 | |
| namespace internal {
 | |
| 
 | |
| template <typename T, bool Vectorizable>
 | |
| struct functor_traits<TrackedVisitor<T, Vectorizable>> {
 | |
|   enum { PacketAccess = Vectorizable, LinearAccess = false, Cost = 1 };
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| }  // namespace Eigen
 | |
| 
 | |
| template <typename Derived, bool Vectorized>
 | |
| void checkOptimalTraversal_impl(const DenseBase<Derived>& mat) {
 | |
|   using Scalar = typename DenseBase<Derived>::Scalar;
 | |
|   static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size;
 | |
|   static constexpr bool RowMajor = Derived::IsRowMajor;
 | |
|   Derived X(mat.rows(), mat.cols());
 | |
|   X.setRandom();
 | |
|   TrackedVisitor<Derived, Vectorized> visitor;
 | |
|   visitor.visited.reserve(X.size());
 | |
|   X.visit(visitor);
 | |
|   Index count = 0;
 | |
|   for (Index j = 0; j < X.outerSize(); ++j) {
 | |
|     for (Index i = 0; i < X.innerSize(); ++i) {
 | |
|       Index r = RowMajor ? j : i;
 | |
|       Index c = RowMajor ? i : j;
 | |
|       VERIFY_IS_EQUAL(visitor.visited[count].first, r);
 | |
|       VERIFY_IS_EQUAL(visitor.visited[count].second, c);
 | |
|       ++count;
 | |
|     }
 | |
|   }
 | |
|   Index vectorOps = Vectorized ? ((X.innerSize() / PacketSize) * X.outerSize()) : 0;
 | |
|   Index scalarOps = X.size() - (vectorOps * PacketSize);
 | |
|   VERIFY_IS_EQUAL(vectorOps, visitor.vectorOps);
 | |
|   VERIFY_IS_EQUAL(scalarOps, visitor.scalarOps);
 | |
| }
 | |
| 
 | |
| void checkOptimalTraversal() {
 | |
|   using Scalar = float;
 | |
|   constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size;
 | |
|   // use sizes that mix vector and scalar ops
 | |
|   constexpr int Rows = 3 * PacketSize + 1;
 | |
|   constexpr int Cols = 4 * PacketSize + 1;
 | |
|   int rows = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE);
 | |
|   int cols = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE);
 | |
| 
 | |
|   using UnrollColMajor = Matrix<Scalar, Rows, Cols, ColMajor>;
 | |
|   using UnrollRowMajor = Matrix<Scalar, Rows, Cols, RowMajor>;
 | |
|   using DynamicColMajor = Matrix<Scalar, Dynamic, Dynamic, ColMajor>;
 | |
|   using DynamicRowMajor = Matrix<Scalar, Dynamic, Dynamic, RowMajor>;
 | |
| 
 | |
|   // Scalar-only visitors
 | |
|   checkOptimalTraversal_impl<UnrollColMajor, false>(UnrollColMajor(Rows, Cols));
 | |
|   checkOptimalTraversal_impl<UnrollRowMajor, false>(UnrollRowMajor(Rows, Cols));
 | |
|   checkOptimalTraversal_impl<DynamicColMajor, false>(DynamicColMajor(rows, cols));
 | |
|   checkOptimalTraversal_impl<DynamicRowMajor, false>(DynamicRowMajor(rows, cols));
 | |
| 
 | |
|   // Vectorized visitors
 | |
|   checkOptimalTraversal_impl<UnrollColMajor, true>(UnrollColMajor(Rows, Cols));
 | |
|   checkOptimalTraversal_impl<UnrollRowMajor, true>(UnrollRowMajor(Rows, Cols));
 | |
|   checkOptimalTraversal_impl<DynamicColMajor, true>(DynamicColMajor(rows, cols));
 | |
|   checkOptimalTraversal_impl<DynamicRowMajor, true>(DynamicRowMajor(rows, cols));
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(visitor) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(matrixVisitor(Matrix<float, 1, 1>()));
 | |
|     CALL_SUBTEST_2(matrixVisitor(Matrix2f()));
 | |
|     CALL_SUBTEST_3(matrixVisitor(Matrix4d()));
 | |
|     CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12)));
 | |
|     CALL_SUBTEST_5(matrixVisitor(Matrix<double, Dynamic, Dynamic, RowMajor>(20, 20)));
 | |
|     CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12)));
 | |
|   }
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_7(vectorVisitor(Vector4f()));
 | |
|     CALL_SUBTEST_7(vectorVisitor(Matrix<int, 12, 1>()));
 | |
|     CALL_SUBTEST_8(vectorVisitor(VectorXd(10)));
 | |
|     CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10)));
 | |
|     CALL_SUBTEST_10(vectorVisitor(VectorXf(33)));
 | |
|   }
 | |
|   CALL_SUBTEST_11(checkOptimalTraversal());
 | |
| }
 | 
