278 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <unsupported/Eigen/FFT>
 | |
| 
 | |
| template <typename T>
 | |
| inline std::complex<T> RandomCpx() {
 | |
|   return std::complex<T>((T)(rand() / (T)RAND_MAX - .5), (T)(rand() / (T)RAND_MAX - .5));
 | |
| }
 | |
| 
 | |
| using namespace std;
 | |
| using namespace Eigen;
 | |
| 
 | |
| template <typename T>
 | |
| inline complex<long double> promote(complex<T> x) {
 | |
|   return complex<long double>((long double)x.real(), (long double)x.imag());
 | |
| }
 | |
| 
 | |
| inline complex<long double> promote(float x) { return complex<long double>((long double)x); }
 | |
| inline complex<long double> promote(double x) { return complex<long double>((long double)x); }
 | |
| inline complex<long double> promote(long double x) { return complex<long double>((long double)x); }
 | |
| 
 | |
| template <typename VT1, typename VT2>
 | |
| long double fft_rmse(const VT1& fftbuf, const VT2& timebuf) {
 | |
|   long double totalpower = 0;
 | |
|   long double difpower = 0;
 | |
|   long double pi = acos((long double)-1);
 | |
|   for (size_t k0 = 0; k0 < (size_t)fftbuf.size(); ++k0) {
 | |
|     complex<long double> acc = 0;
 | |
|     long double phinc = (long double)(-2.) * k0 * pi / timebuf.size();
 | |
|     for (size_t k1 = 0; k1 < (size_t)timebuf.size(); ++k1) {
 | |
|       acc += promote(timebuf[k1]) * exp(complex<long double>(0, k1 * phinc));
 | |
|     }
 | |
|     totalpower += numext::abs2(acc);
 | |
|     complex<long double> x = promote(fftbuf[k0]);
 | |
|     complex<long double> dif = acc - x;
 | |
|     difpower += numext::abs2(dif);
 | |
|     // cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(numext::abs2(dif)) << endl;
 | |
|   }
 | |
|   // cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
 | |
|   return sqrt(difpower / totalpower);
 | |
| }
 | |
| 
 | |
| template <typename VT1, typename VT2>
 | |
| long double dif_rmse(const VT1 buf1, const VT2 buf2) {
 | |
|   long double totalpower = 0;
 | |
|   long double difpower = 0;
 | |
|   size_t n = (min)(buf1.size(), buf2.size());
 | |
|   for (size_t k = 0; k < n; ++k) {
 | |
|     totalpower += (long double)((numext::abs2(buf1[k]) + numext::abs2(buf2[k])) / 2);
 | |
|     difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
 | |
|   }
 | |
|   return sqrt(difpower / totalpower);
 | |
| }
 | |
| 
 | |
| enum { StdVectorContainer, EigenVectorContainer };
 | |
| 
 | |
| template <int Container, typename Scalar>
 | |
| struct VectorType;
 | |
| 
 | |
| template <typename Scalar>
 | |
| struct VectorType<StdVectorContainer, Scalar> {
 | |
|   typedef vector<Scalar> type;
 | |
| };
 | |
| 
 | |
| template <typename Scalar>
 | |
| struct VectorType<EigenVectorContainer, Scalar> {
 | |
|   typedef Matrix<Scalar, Dynamic, 1> type;
 | |
| };
 | |
| 
 | |
| template <int Container, typename T>
 | |
| void test_scalar_generic(int nfft) {
 | |
|   typedef typename FFT<T>::Complex Complex;
 | |
|   typedef typename FFT<T>::Scalar Scalar;
 | |
|   typedef typename VectorType<Container, Scalar>::type ScalarVector;
 | |
|   typedef typename VectorType<Container, Complex>::type ComplexVector;
 | |
| 
 | |
|   FFT<T> fft;
 | |
|   ScalarVector tbuf(nfft);
 | |
|   ComplexVector freqBuf;
 | |
|   for (int k = 0; k < nfft; ++k) tbuf[k] = (T)(rand() / (double)RAND_MAX - .5);
 | |
| 
 | |
|   // make sure it DOESN'T give the right full spectrum answer
 | |
|   // if we've asked for half-spectrum
 | |
|   fft.SetFlag(fft.HalfSpectrum);
 | |
|   fft.fwd(freqBuf, tbuf);
 | |
|   VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1));
 | |
|   VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>());  // gross check
 | |
| 
 | |
|   fft.ClearFlag(fft.HalfSpectrum);
 | |
|   fft.fwd(freqBuf, tbuf);
 | |
|   VERIFY((size_t)freqBuf.size() == (size_t)nfft);
 | |
|   VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>());  // gross check
 | |
| 
 | |
|   if (nfft & 1) return;  // odd FFTs get the wrong size inverse FFT
 | |
| 
 | |
|   ScalarVector tbuf2;
 | |
|   fft.inv(tbuf2, freqBuf);
 | |
|   VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>());  // gross check
 | |
| 
 | |
|   // verify that the Unscaled flag takes effect
 | |
|   ScalarVector tbuf3;
 | |
|   fft.SetFlag(fft.Unscaled);
 | |
| 
 | |
|   fft.inv(tbuf3, freqBuf);
 | |
| 
 | |
|   for (int k = 0; k < nfft; ++k) tbuf3[k] *= T(1. / nfft);
 | |
| 
 | |
|   // for (size_t i=0;i<(size_t) tbuf.size();++i)
 | |
|   //     cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] -
 | |
|   //     tbuf[i] ) <<  endl;
 | |
| 
 | |
|   VERIFY(T(dif_rmse(tbuf, tbuf3)) < test_precision<T>());  // gross check
 | |
| 
 | |
|   // verify that ClearFlag works
 | |
|   fft.ClearFlag(fft.Unscaled);
 | |
|   fft.inv(tbuf2, freqBuf);
 | |
|   VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>());  // gross check
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_scalar(int nfft) {
 | |
|   test_scalar_generic<StdVectorContainer, T>(nfft);
 | |
|   // test_scalar_generic<EigenVectorContainer,T>(nfft);
 | |
| }
 | |
| 
 | |
| template <int Container, typename T>
 | |
| void test_complex_generic(int nfft) {
 | |
|   typedef typename FFT<T>::Complex Complex;
 | |
|   typedef typename VectorType<Container, Complex>::type ComplexVector;
 | |
| 
 | |
|   FFT<T> fft;
 | |
| 
 | |
|   ComplexVector inbuf(nfft);
 | |
|   ComplexVector outbuf;
 | |
|   ComplexVector buf3;
 | |
|   for (int k = 0; k < nfft; ++k)
 | |
|     inbuf[k] = Complex((T)(rand() / (double)RAND_MAX - .5), (T)(rand() / (double)RAND_MAX - .5));
 | |
|   fft.fwd(outbuf, inbuf);
 | |
| 
 | |
|   VERIFY(T(fft_rmse(outbuf, inbuf)) < test_precision<T>());  // gross check
 | |
|   fft.inv(buf3, outbuf);
 | |
| 
 | |
|   VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>());  // gross check
 | |
| 
 | |
|   // verify that the Unscaled flag takes effect
 | |
|   ComplexVector buf4;
 | |
|   fft.SetFlag(fft.Unscaled);
 | |
|   fft.inv(buf4, outbuf);
 | |
|   for (int k = 0; k < nfft; ++k) buf4[k] *= T(1. / nfft);
 | |
|   VERIFY(T(dif_rmse(inbuf, buf4)) < test_precision<T>());  // gross check
 | |
| 
 | |
|   // verify that ClearFlag works
 | |
|   fft.ClearFlag(fft.Unscaled);
 | |
|   fft.inv(buf3, outbuf);
 | |
|   VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>());  // gross check
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_complex(int nfft) {
 | |
|   test_complex_generic<StdVectorContainer, T>(nfft);
 | |
|   test_complex_generic<EigenVectorContainer, T>(nfft);
 | |
| }
 | |
| 
 | |
| template <typename T, int nrows, int ncols>
 | |
| void test_complex2d() {
 | |
|   typedef typename Eigen::FFT<T>::Complex Complex;
 | |
|   FFT<T> fft;
 | |
|   Eigen::Matrix<Complex, nrows, ncols> src, src2, dst, dst2;
 | |
| 
 | |
|   src = Eigen::Matrix<Complex, nrows, ncols>::Random();
 | |
|   // src =  Eigen::Matrix<Complex,nrows,ncols>::Identity();
 | |
| 
 | |
|   for (int k = 0; k < ncols; k++) {
 | |
|     Eigen::Matrix<Complex, nrows, 1> tmpOut;
 | |
|     fft.fwd(tmpOut, src.col(k));
 | |
|     dst2.col(k) = tmpOut;
 | |
|   }
 | |
| 
 | |
|   for (int k = 0; k < nrows; k++) {
 | |
|     Eigen::Matrix<Complex, 1, ncols> tmpOut;
 | |
|     fft.fwd(tmpOut, dst2.row(k));
 | |
|     dst2.row(k) = tmpOut;
 | |
|   }
 | |
| 
 | |
|   fft.fwd2(dst.data(), src.data(), ncols, nrows);
 | |
|   fft.inv2(src2.data(), dst.data(), ncols, nrows);
 | |
|   VERIFY((src - src2).norm() < test_precision<T>());
 | |
|   VERIFY((dst - dst2).norm() < test_precision<T>());
 | |
| }
 | |
| 
 | |
| inline void test_return_by_value(int len) {
 | |
|   VectorXf in;
 | |
|   VectorXf in1;
 | |
|   in.setRandom(len);
 | |
|   VectorXcf out1, out2;
 | |
|   FFT<float> fft;
 | |
| 
 | |
|   fft.SetFlag(fft.HalfSpectrum);
 | |
| 
 | |
|   fft.fwd(out1, in);
 | |
|   out2 = fft.fwd(in);
 | |
|   VERIFY((out1 - out2).norm() < test_precision<float>());
 | |
|   in1 = fft.inv(out1);
 | |
|   VERIFY((in1 - in).norm() < test_precision<float>());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(FFTW) {
 | |
|   CALL_SUBTEST(test_return_by_value(32));
 | |
|   CALL_SUBTEST(test_complex<float>(32));
 | |
|   CALL_SUBTEST(test_complex<double>(32));
 | |
|   CALL_SUBTEST(test_complex<float>(256));
 | |
|   CALL_SUBTEST(test_complex<double>(256));
 | |
|   CALL_SUBTEST(test_complex<float>(3 * 8));
 | |
|   CALL_SUBTEST(test_complex<double>(3 * 8));
 | |
|   CALL_SUBTEST(test_complex<float>(5 * 32));
 | |
|   CALL_SUBTEST(test_complex<double>(5 * 32));
 | |
|   CALL_SUBTEST(test_complex<float>(2 * 3 * 4));
 | |
|   CALL_SUBTEST(test_complex<double>(2 * 3 * 4));
 | |
|   CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5));
 | |
|   CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5));
 | |
|   CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5 * 7));
 | |
|   CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5 * 7));
 | |
| 
 | |
|   CALL_SUBTEST(test_scalar<float>(32));
 | |
|   CALL_SUBTEST(test_scalar<double>(32));
 | |
|   CALL_SUBTEST(test_scalar<float>(45));
 | |
|   CALL_SUBTEST(test_scalar<double>(45));
 | |
|   CALL_SUBTEST(test_scalar<float>(50));
 | |
|   CALL_SUBTEST(test_scalar<double>(50));
 | |
|   CALL_SUBTEST(test_scalar<float>(256));
 | |
|   CALL_SUBTEST(test_scalar<double>(256));
 | |
|   CALL_SUBTEST(test_scalar<float>(2 * 3 * 4 * 5 * 7));
 | |
|   CALL_SUBTEST(test_scalar<double>(2 * 3 * 4 * 5 * 7));
 | |
| 
 | |
| #if defined EIGEN_HAS_FFTWL || defined EIGEN_POCKETFFT_DEFAULT
 | |
|   CALL_SUBTEST(test_complex<long double>(32));
 | |
|   CALL_SUBTEST(test_complex<long double>(256));
 | |
|   CALL_SUBTEST(test_complex<long double>(3 * 8));
 | |
|   CALL_SUBTEST(test_complex<long double>(5 * 32));
 | |
|   CALL_SUBTEST(test_complex<long double>(2 * 3 * 4));
 | |
|   CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5));
 | |
|   CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5 * 7));
 | |
| 
 | |
|   CALL_SUBTEST(test_scalar<long double>(32));
 | |
|   CALL_SUBTEST(test_scalar<long double>(45));
 | |
|   CALL_SUBTEST(test_scalar<long double>(50));
 | |
|   CALL_SUBTEST(test_scalar<long double>(256));
 | |
|   CALL_SUBTEST(test_scalar<long double>(2 * 3 * 4 * 5 * 7));
 | |
| 
 | |
|   CALL_SUBTEST((test_complex2d<long double, 2 * 3 * 4, 2 * 3 * 4>()));
 | |
|   CALL_SUBTEST((test_complex2d<long double, 3 * 4 * 5, 3 * 4 * 5>()));
 | |
|   CALL_SUBTEST((test_complex2d<long double, 24, 60>()));
 | |
|   CALL_SUBTEST((test_complex2d<long double, 60, 24>()));
 | |
| // fail to build since Eigen limit the stack allocation size,too big here.
 | |
| // CALL_SUBTEST( ( test_complex2d<long double, 256, 256> () ) );
 | |
| #endif
 | |
| #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT
 | |
|   CALL_SUBTEST((test_complex2d<float, 24, 24>()));
 | |
|   CALL_SUBTEST((test_complex2d<float, 60, 60>()));
 | |
|   CALL_SUBTEST((test_complex2d<float, 24, 60>()));
 | |
|   CALL_SUBTEST((test_complex2d<float, 60, 24>()));
 | |
| #endif
 | |
| #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT
 | |
|   CALL_SUBTEST((test_complex2d<double, 24, 24>()));
 | |
|   CALL_SUBTEST((test_complex2d<double, 60, 60>()));
 | |
|   CALL_SUBTEST((test_complex2d<double, 24, 60>()));
 | |
|   CALL_SUBTEST((test_complex2d<double, 60, 24>()));
 | |
| #endif
 | |
| }
 | 
