70 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <mpreal.h>  // Must be included before main.h.
 | |
| #include "main.h"
 | |
| #include <Eigen/MPRealSupport>
 | |
| #include <Eigen/LU>
 | |
| #include <Eigen/Eigenvalues>
 | |
| #include <sstream>
 | |
| 
 | |
| using namespace mpfr;
 | |
| using namespace Eigen;
 | |
| 
 | |
| EIGEN_DECLARE_TEST(mpreal_support) {
 | |
|   // set precision to 256 bits (double has only 53 bits)
 | |
|   mpreal::set_default_prec(256);
 | |
|   typedef Matrix<mpreal, Eigen::Dynamic, Eigen::Dynamic> MatrixXmp;
 | |
|   typedef Matrix<std::complex<mpreal>, Eigen::Dynamic, Eigen::Dynamic> MatrixXcmp;
 | |
| 
 | |
|   std::cerr << "epsilon =         " << NumTraits<mpreal>::epsilon() << "\n";
 | |
|   std::cerr << "dummy_precision = " << NumTraits<mpreal>::dummy_precision() << "\n";
 | |
|   std::cerr << "highest =         " << NumTraits<mpreal>::highest() << "\n";
 | |
|   std::cerr << "lowest =          " << NumTraits<mpreal>::lowest() << "\n";
 | |
|   std::cerr << "digits10 =        " << NumTraits<mpreal>::digits10() << "\n";
 | |
|   std::cerr << "max_digits10 =    " << NumTraits<mpreal>::max_digits10() << "\n";
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     int s = Eigen::internal::random<int>(1, 100);
 | |
|     MatrixXmp A = MatrixXmp::Random(s, s);
 | |
|     MatrixXmp B = MatrixXmp::Random(s, s);
 | |
|     MatrixXmp S = A.adjoint() * A;
 | |
|     MatrixXmp X;
 | |
|     MatrixXcmp Ac = MatrixXcmp::Random(s, s);
 | |
|     MatrixXcmp Bc = MatrixXcmp::Random(s, s);
 | |
|     MatrixXcmp Sc = Ac.adjoint() * Ac;
 | |
|     MatrixXcmp Xc;
 | |
| 
 | |
|     // Basic stuffs
 | |
|     VERIFY_IS_APPROX(A.real(), A);
 | |
|     VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm()));
 | |
|     VERIFY_IS_APPROX(A.array().exp(), exp(A.array()));
 | |
|     VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs());
 | |
|     VERIFY_IS_APPROX(A.array().sin(), sin(A.array()));
 | |
|     VERIFY_IS_APPROX(A.array().cos(), cos(A.array()));
 | |
| 
 | |
|     // Cholesky
 | |
|     X = S.selfadjointView<Lower>().llt().solve(B);
 | |
|     VERIFY_IS_APPROX((S.selfadjointView<Lower>() * X).eval(), B);
 | |
| 
 | |
|     Xc = Sc.selfadjointView<Lower>().llt().solve(Bc);
 | |
|     VERIFY_IS_APPROX((Sc.selfadjointView<Lower>() * Xc).eval(), Bc);
 | |
| 
 | |
|     // partial LU
 | |
|     X = A.lu().solve(B);
 | |
|     VERIFY_IS_APPROX((A * X).eval(), B);
 | |
| 
 | |
|     // symmetric eigenvalues
 | |
|     SelfAdjointEigenSolver<MatrixXmp> eig(S);
 | |
|     VERIFY_IS_EQUAL(eig.info(), Success);
 | |
|     VERIFY(
 | |
|         (S.selfadjointView<Lower>() * eig.eigenvectors())
 | |
|             .isApprox(eig.eigenvectors() * eig.eigenvalues().asDiagonal(), NumTraits<mpreal>::dummy_precision() * 1e3));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     MatrixXmp A(8, 3);
 | |
|     A.setRandom();
 | |
|     // test output (interesting things happen in this code)
 | |
|     std::stringstream stream;
 | |
|     stream << A;
 | |
|   }
 | |
| }
 | 
