start ---> head end ---> tail Much frustration with sed syntax. Need to learn perl some day.
179 lines
7.1 KiB
C++
179 lines
7.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
|
|
#define EIGEN_HOUSEHOLDER_SEQUENCE_H
|
|
|
|
/** \ingroup Householder_Module
|
|
* \householder_module
|
|
* \class HouseholderSequence
|
|
* \brief Represents a sequence of householder reflections with decreasing size
|
|
*
|
|
* This class represents a product sequence of householder reflections \f$ H = \Pi_0^{n-1} H_i \f$
|
|
* where \f$ H_i \f$ is the i-th householder transformation \f$ I - h_i v_i v_i^* \f$,
|
|
* \f$ v_i \f$ is the i-th householder vector \f$ [ 1, m_vectors(i+1,i), m_vectors(i+2,i), ...] \f$
|
|
* and \f$ h_i \f$ is the i-th householder coefficient \c m_coeffs[i].
|
|
*
|
|
* Typical usages are listed below, where H is a HouseholderSequence:
|
|
* \code
|
|
* A.applyOnTheRight(H); // A = A * H
|
|
* A.applyOnTheLeft(H); // A = H * A
|
|
* A.applyOnTheRight(H.adjoint()); // A = A * H^*
|
|
* A.applyOnTheLeft(H.adjoint()); // A = H^* * A
|
|
* MatrixXd Q = H; // conversion to a dense matrix
|
|
* \endcode
|
|
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate.
|
|
*
|
|
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
|
*/
|
|
|
|
template<typename VectorsType, typename CoeffsType>
|
|
struct ei_traits<HouseholderSequence<VectorsType,CoeffsType> >
|
|
{
|
|
typedef typename VectorsType::Scalar Scalar;
|
|
enum {
|
|
RowsAtCompileTime = ei_traits<VectorsType>::RowsAtCompileTime,
|
|
ColsAtCompileTime = ei_traits<VectorsType>::RowsAtCompileTime,
|
|
MaxRowsAtCompileTime = ei_traits<VectorsType>::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = ei_traits<VectorsType>::MaxRowsAtCompileTime,
|
|
Flags = 0
|
|
};
|
|
};
|
|
|
|
template<typename VectorsType, typename CoeffsType> class HouseholderSequence
|
|
: public AnyMatrixBase<HouseholderSequence<VectorsType,CoeffsType> >
|
|
{
|
|
typedef typename VectorsType::Scalar Scalar;
|
|
public:
|
|
|
|
typedef HouseholderSequence<VectorsType,
|
|
typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
|
NestByValue<typename ei_cleantype<typename CoeffsType::ConjugateReturnType>::type >,
|
|
CoeffsType>::ret> ConjugateReturnType;
|
|
|
|
HouseholderSequence(const VectorsType& v, const CoeffsType& h, bool trans = false)
|
|
: m_vectors(v), m_coeffs(h), m_trans(trans), m_actualVectors(v.diagonalSize())
|
|
{}
|
|
|
|
HouseholderSequence(const VectorsType& v, const CoeffsType& h, bool trans, int actualVectors)
|
|
: m_vectors(v), m_coeffs(h), m_trans(trans), m_actualVectors(actualVectors)
|
|
{}
|
|
|
|
int rows() const { return m_vectors.rows(); }
|
|
int cols() const { return m_vectors.rows(); }
|
|
|
|
HouseholderSequence transpose() const
|
|
{ return HouseholderSequence(m_vectors, m_coeffs, !m_trans, m_actualVectors); }
|
|
|
|
ConjugateReturnType conjugate() const
|
|
{ return ConjugateReturnType(m_vectors, m_coeffs.conjugate(), m_trans, m_actualVectors); }
|
|
|
|
ConjugateReturnType adjoint() const
|
|
{ return ConjugateReturnType(m_vectors, m_coeffs.conjugate(), !m_trans, m_actualVectors); }
|
|
|
|
ConjugateReturnType inverse() const { return adjoint(); }
|
|
|
|
/** \internal */
|
|
template<typename DestType> void evalTo(DestType& dst) const
|
|
{
|
|
int vecs = m_actualVectors;
|
|
int length = m_vectors.rows();
|
|
dst.setIdentity();
|
|
Matrix<Scalar,1,DestType::RowsAtCompileTime> temp(dst.rows());
|
|
for(int k = vecs-1; k >= 0; --k)
|
|
{
|
|
if(m_trans)
|
|
dst.corner(BottomRight, length-k, length-k)
|
|
.applyHouseholderOnTheRight(m_vectors.col(k).tail(length-k-1), m_coeffs.coeff(k), &temp.coeffRef(0));
|
|
else
|
|
dst.corner(BottomRight, length-k, length-k)
|
|
.applyHouseholderOnTheLeft(m_vectors.col(k).tail(length-k-1), m_coeffs.coeff(k), &temp.coeffRef(k));
|
|
}
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
|
{
|
|
int vecs = m_actualVectors; // number of householder vectors
|
|
int length = m_vectors.rows(); // size of the largest householder vector
|
|
Matrix<Scalar,1,Dest::RowsAtCompileTime> temp(dst.rows());
|
|
for(int k = 0; k < vecs; ++k)
|
|
{
|
|
int actual_k = m_trans ? vecs-k-1 : k;
|
|
dst.corner(BottomRight, dst.rows(), length-actual_k)
|
|
.applyHouseholderOnTheRight(m_vectors.col(actual_k).tail(length-actual_k-1), m_coeffs.coeff(actual_k), &temp.coeffRef(0));
|
|
}
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
|
|
{
|
|
int vecs = m_actualVectors; // number of householder vectors
|
|
int length = m_vectors.rows(); // size of the largest householder vector
|
|
Matrix<Scalar,1,Dest::ColsAtCompileTime> temp(dst.cols());
|
|
for(int k = 0; k < vecs; ++k)
|
|
{
|
|
int actual_k = m_trans ? k : vecs-k-1;
|
|
dst.corner(BottomRight, length-actual_k, dst.cols())
|
|
.applyHouseholderOnTheLeft(m_vectors.col(actual_k).tail(length-actual_k-1), m_coeffs.coeff(actual_k), &temp.coeffRef(0));
|
|
}
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
typename OtherDerived::PlainMatrixType operator*(const MatrixBase<OtherDerived>& other) const
|
|
{
|
|
typename OtherDerived::PlainMatrixType res(other);
|
|
applyThisOnTheLeft(res);
|
|
return res;
|
|
}
|
|
|
|
template<typename OtherDerived> friend
|
|
typename OtherDerived::PlainMatrixType operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence& h)
|
|
{
|
|
typename OtherDerived::PlainMatrixType res(other);
|
|
h.applyThisOnTheRight(res);
|
|
return res;
|
|
}
|
|
|
|
protected:
|
|
typename VectorsType::Nested m_vectors;
|
|
typename CoeffsType::Nested m_coeffs;
|
|
bool m_trans;
|
|
int m_actualVectors;
|
|
};
|
|
|
|
template<typename VectorsType, typename CoeffsType>
|
|
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h, bool trans=false)
|
|
{
|
|
return HouseholderSequence<VectorsType,CoeffsType>(v, h, trans);
|
|
}
|
|
|
|
template<typename VectorsType, typename CoeffsType>
|
|
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h, bool trans, int actualVectors)
|
|
{
|
|
return HouseholderSequence<VectorsType,CoeffsType>(v, h, trans, actualVectors);
|
|
}
|
|
|
|
#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
|