146 lines
4.5 KiB
C++
146 lines
4.5 KiB
C++
#include <iostream>
|
|
#include <Eigen/Core>
|
|
#include <Eigen/Dense>
|
|
#include <Eigen/IterativeLinearSolvers>
|
|
#include <unsupported/Eigen/IterativeSolvers>
|
|
|
|
class MatrixReplacement;
|
|
using Eigen::SparseMatrix;
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
// MatrixReplacement looks-like a SparseMatrix, so let's inherits its traits:
|
|
template<>
|
|
struct traits<MatrixReplacement> : public Eigen::internal::traits<Eigen::SparseMatrix<double> >
|
|
{};
|
|
}
|
|
}
|
|
|
|
// Example of a matrix-free wrapper from a user type to Eigen's compatible type
|
|
// For the sake of simplicity, this example simply wrap a Eigen::SparseMatrix.
|
|
class MatrixReplacement : public Eigen::EigenBase<MatrixReplacement> {
|
|
public:
|
|
// Required typedefs, constants, and method:
|
|
typedef double Scalar;
|
|
typedef double RealScalar;
|
|
typedef int StorageIndex;
|
|
enum {
|
|
ColsAtCompileTime = Eigen::Dynamic,
|
|
MaxColsAtCompileTime = Eigen::Dynamic,
|
|
IsRowMajor = false
|
|
};
|
|
|
|
Index rows() const { return _n; }
|
|
Index cols() const { return _n; }
|
|
|
|
template<typename Rhs>
|
|
Eigen::Product<MatrixReplacement,Rhs,Eigen::AliasFreeProduct> operator*(const Eigen::MatrixBase<Rhs>& x) const {
|
|
return Eigen::Product<MatrixReplacement,Rhs,Eigen::AliasFreeProduct>(*this, x.derived());
|
|
}
|
|
|
|
// Custom API:
|
|
MatrixReplacement(int n){ _n = n; }
|
|
|
|
private:
|
|
int _n;
|
|
};
|
|
|
|
|
|
// Implementation of MatrixReplacement * Eigen::DenseVector though a specialization of internal::generic_product_impl:
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
template<typename Rhs>
|
|
struct generic_product_impl<MatrixReplacement, Rhs, SparseShape, DenseShape, GemvProduct> // GEMV stands for matrix-vector
|
|
: generic_product_impl_base<MatrixReplacement,Rhs,generic_product_impl<MatrixReplacement,Rhs> >
|
|
{
|
|
typedef typename Product<MatrixReplacement,Rhs>::Scalar Scalar;
|
|
|
|
template<typename Dest>
|
|
static void scaleAndAddTo(Dest& dst, const MatrixReplacement& lhs, const Rhs& rhs, const Scalar& alpha)
|
|
{
|
|
// This method should implement "dst += alpha * lhs * rhs" inplace,
|
|
// however, for iterative solvers, alpha is always equal to 1, so let's not bother about it.
|
|
assert(alpha==Scalar(1) && "scaling is not implemented");
|
|
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
|
|
|
|
// LLS:
|
|
// the matrix comes from 1D Poisson Eq. -u_{xx} = f
|
|
// FD scheme is: 2 U_{i} - U_{i-1}-U_{i+1} = f_i, i=0,...,n-1
|
|
// BC condition: U_{-1}=0, U_{n}=0
|
|
int n = lhs.cols();
|
|
Scalar *dst_ptr = dst.data();
|
|
const Scalar *rhs_ptr = rhs.data();
|
|
|
|
for(int i=0;i<n;i++) {
|
|
Scalar v=rhs_ptr[i];
|
|
Scalar vp,vm;
|
|
if(i==n-1) {
|
|
vp = 0.0;
|
|
} else {
|
|
vp = rhs_ptr[i+1];
|
|
}
|
|
if(i==0) {
|
|
vm = 0.0;
|
|
} else {
|
|
vm = rhs_ptr[i-1];
|
|
}
|
|
dst_ptr[i]=2.0*v-vp-vm;
|
|
}
|
|
}
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int n = 4;
|
|
|
|
MatrixReplacement A(n);
|
|
|
|
Eigen::VectorXd b(n), x;
|
|
b.setOnes();
|
|
|
|
// Solve Ax = b using various iterative solver with matrix-free version:
|
|
{
|
|
Eigen::ConjugateGradient<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> cg;
|
|
cg.compute(A);
|
|
x = cg.solve(b);
|
|
std::cout << "CG: #iterations: " << cg.iterations() << ", estimated error: " << cg.error() << std::endl;
|
|
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
|
|
}
|
|
|
|
{
|
|
Eigen::BiCGSTAB<MatrixReplacement, Eigen::IdentityPreconditioner> bicg;
|
|
bicg.compute(A);
|
|
x = bicg.solve(b);
|
|
std::cout << "BiCGSTAB: #iterations: " << bicg.iterations() << ", estimated error: " << bicg.error() << std::endl;
|
|
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
|
|
}
|
|
|
|
{
|
|
Eigen::GMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
|
|
gmres.compute(A);
|
|
x = gmres.solve(b);
|
|
std::cout << "GMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
|
|
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
|
|
}
|
|
|
|
{
|
|
Eigen::DGMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
|
|
gmres.compute(A);
|
|
x = gmres.solve(b);
|
|
std::cout << "DGMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
|
|
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
|
|
}
|
|
|
|
{
|
|
Eigen::MINRES<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> minres;
|
|
minres.compute(A);
|
|
x = minres.solve(b);
|
|
std::cout << "MINRES: #iterations: " << minres.iterations() << ", estimated error: " << minres.error() << std::endl;
|
|
for(int i=0;i<n;i++) std::cout << "x["<<i<<"] = "<<x[i]<<"\n";
|
|
}
|
|
}
|