126 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra.
 | 
						|
//
 | 
						|
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
 | 
						|
//
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla
 | 
						|
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
						|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
 | 
						|
#include "sparse.h"
 | 
						|
 | 
						|
template<typename Scalar,typename Index> void sparse_vector(int rows, int cols)
 | 
						|
{
 | 
						|
  double densityMat = (std::max)(8./(rows*cols), 0.01);
 | 
						|
  double densityVec = (std::max)(8./float(rows), 0.1);
 | 
						|
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
 | 
						|
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
 | 
						|
  typedef SparseVector<Scalar,0,Index> SparseVectorType;
 | 
						|
  typedef SparseMatrix<Scalar,0,Index> SparseMatrixType;
 | 
						|
  Scalar eps = 1e-6;
 | 
						|
 | 
						|
  SparseMatrixType m1(rows,rows);
 | 
						|
  SparseVectorType v1(rows), v2(rows), v3(rows);
 | 
						|
  DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
 | 
						|
  DenseVector refV1 = DenseVector::Random(rows),
 | 
						|
              refV2 = DenseVector::Random(rows),
 | 
						|
              refV3 = DenseVector::Random(rows);
 | 
						|
 | 
						|
  std::vector<int> zerocoords, nonzerocoords;
 | 
						|
  initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
 | 
						|
  initSparse<Scalar>(densityMat, refM1, m1);
 | 
						|
 | 
						|
  initSparse<Scalar>(densityVec, refV2, v2);
 | 
						|
  initSparse<Scalar>(densityVec, refV3, v3);
 | 
						|
 | 
						|
  Scalar s1 = internal::random<Scalar>();
 | 
						|
 | 
						|
  // test coeff and coeffRef
 | 
						|
  for (unsigned int i=0; i<zerocoords.size(); ++i)
 | 
						|
  {
 | 
						|
    VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps );
 | 
						|
    //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
 | 
						|
  }
 | 
						|
  {
 | 
						|
    VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
 | 
						|
    int j=0;
 | 
						|
    for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
 | 
						|
    {
 | 
						|
      VERIFY(nonzerocoords[j]==it.index());
 | 
						|
      VERIFY(it.value()==v1.coeff(it.index()));
 | 
						|
      VERIFY(it.value()==refV1.coeff(it.index()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  VERIFY_IS_APPROX(v1, refV1);
 | 
						|
  
 | 
						|
  // test coeffRef with reallocation
 | 
						|
  {
 | 
						|
    SparseVectorType v4(rows);
 | 
						|
    DenseVector v5 = DenseVector::Zero(rows);
 | 
						|
    for(int k=0; k<rows; ++k)
 | 
						|
    {
 | 
						|
      int i = internal::random<int>(0,rows-1);
 | 
						|
      Scalar v = internal::random<Scalar>();
 | 
						|
      v4.coeffRef(i) += v;
 | 
						|
      v5.coeffRef(i) += v;
 | 
						|
    }
 | 
						|
    VERIFY_IS_APPROX(v4,v5);
 | 
						|
  }
 | 
						|
 | 
						|
  v1.coeffRef(nonzerocoords[0]) = Scalar(5);
 | 
						|
  refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
 | 
						|
  VERIFY_IS_APPROX(v1, refV1);
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(v1+v2, refV1+refV2);
 | 
						|
  VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(v1*=s1, refV1*=s1);
 | 
						|
  VERIFY_IS_APPROX(v1/=s1, refV1/=s1);
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(v1+=v2, refV1+=refV2);
 | 
						|
  VERIFY_IS_APPROX(v1-=v2, refV1-=refV2);
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
 | 
						|
  VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(m1*v2, refM1*refV2);
 | 
						|
  VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2));
 | 
						|
  int i = internal::random<int>(0,rows-1);
 | 
						|
  VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
 | 
						|
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
 | 
						|
  
 | 
						|
  VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm());
 | 
						|
 | 
						|
  // test aliasing
 | 
						|
  VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1));
 | 
						|
  VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval()));
 | 
						|
  VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
 | 
						|
  
 | 
						|
  // sparse matrix to sparse vector
 | 
						|
  SparseMatrixType mv1;
 | 
						|
  VERIFY_IS_APPROX((mv1=v1),v1);
 | 
						|
  VERIFY_IS_APPROX(mv1,(v1=mv1));
 | 
						|
  VERIFY_IS_APPROX(mv1,(v1=mv1.transpose()));
 | 
						|
  
 | 
						|
  // check copy to dense vector with transpose
 | 
						|
  refV3.resize(0);
 | 
						|
  VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); 
 | 
						|
  VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); 
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void test_sparse_vector()
 | 
						|
{
 | 
						|
  for(int i = 0; i < g_repeat; i++) {
 | 
						|
    CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
 | 
						|
    CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(16, 16) ));
 | 
						|
    CALL_SUBTEST_1(( sparse_vector<double,long int>(299, 535) ));
 | 
						|
    CALL_SUBTEST_1(( sparse_vector<double,short>(299, 535) ));
 | 
						|
  }
 | 
						|
}
 | 
						|
 |