There were some typos that checked `EIGEN_HAS_CXX14` that should have checked `EIGEN_HAS_CXX14_VARIABLE_TEMPLATES`, causing a mismatch in some of the `Eigen::fix<N>` assumptions. Also fixed the `symbolic_index` test when `EIGEN_HAS_CXX14_VARIABLE_TEMPLATES` is 0. Fixes #2308
273 lines
11 KiB
C++
273 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#ifndef EIGEN_INTEGRAL_CONSTANT_H
|
|
#define EIGEN_INTEGRAL_CONSTANT_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template<int N> class FixedInt;
|
|
template<int N> class VariableAndFixedInt;
|
|
|
|
/** \internal
|
|
* \class FixedInt
|
|
*
|
|
* This class embeds a compile-time integer \c N.
|
|
*
|
|
* It is similar to c++11 std::integral_constant<int,N> but with some additional features
|
|
* such as:
|
|
* - implicit conversion to int
|
|
* - arithmetic and some bitwise operators: -, +, *, /, %, &, |
|
|
* - c++98/14 compatibility with fix<N> and fix<N>() syntax to define integral constants.
|
|
*
|
|
* It is strongly discouraged to directly deal with this class FixedInt. Instances are expcected to
|
|
* be created by the user using Eigen::fix<N> or Eigen::fix<N>(). In C++98-11, the former syntax does
|
|
* not create a FixedInt<N> instance but rather a point to function that needs to be \em cleaned-up
|
|
* using the generic helper:
|
|
* \code
|
|
* internal::cleanup_index_type<T>::type
|
|
* internal::cleanup_index_type<T,DynamicKey>::type
|
|
* \endcode
|
|
* where T can a FixedInt<N>, a pointer to function FixedInt<N> (*)(), or numerous other integer-like representations.
|
|
* \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values.
|
|
*
|
|
* For convenience, you can extract the compile-time value \c N in a generic way using the following helper:
|
|
* \code
|
|
* internal::get_fixed_value<T,DefaultVal>::value
|
|
* \endcode
|
|
* that will give you \c N if T equals FixedInt<N> or FixedInt<N> (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int).
|
|
*
|
|
* \sa fix<N>, class VariableAndFixedInt
|
|
*/
|
|
template<int N> class FixedInt
|
|
{
|
|
public:
|
|
static const int value = N;
|
|
EIGEN_CONSTEXPR operator int() const { return value; }
|
|
FixedInt() {}
|
|
FixedInt( VariableAndFixedInt<N> other) {
|
|
#ifndef EIGEN_INTERNAL_DEBUGGING
|
|
EIGEN_UNUSED_VARIABLE(other);
|
|
#endif
|
|
eigen_internal_assert(int(other)==N);
|
|
}
|
|
|
|
FixedInt<-N> operator-() const { return FixedInt<-N>(); }
|
|
template<int M>
|
|
FixedInt<N+M> operator+( FixedInt<M>) const { return FixedInt<N+M>(); }
|
|
template<int M>
|
|
FixedInt<N-M> operator-( FixedInt<M>) const { return FixedInt<N-M>(); }
|
|
template<int M>
|
|
FixedInt<N*M> operator*( FixedInt<M>) const { return FixedInt<N*M>(); }
|
|
template<int M>
|
|
FixedInt<N/M> operator/( FixedInt<M>) const { return FixedInt<N/M>(); }
|
|
template<int M>
|
|
FixedInt<N%M> operator%( FixedInt<M>) const { return FixedInt<N%M>(); }
|
|
template<int M>
|
|
FixedInt<N|M> operator|( FixedInt<M>) const { return FixedInt<N|M>(); }
|
|
template<int M>
|
|
FixedInt<N&M> operator&( FixedInt<M>) const { return FixedInt<N&M>(); }
|
|
|
|
#if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
|
|
// Needed in C++14 to allow fix<N>():
|
|
FixedInt operator() () const { return *this; }
|
|
|
|
VariableAndFixedInt<N> operator() (int val) const { return VariableAndFixedInt<N>(val); }
|
|
#else
|
|
FixedInt ( FixedInt<N> (*)() ) {}
|
|
#endif
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
FixedInt(std::integral_constant<int,N>) {}
|
|
#endif
|
|
};
|
|
|
|
/** \internal
|
|
* \class VariableAndFixedInt
|
|
*
|
|
* This class embeds both a compile-time integer \c N and a runtime integer.
|
|
* Both values are supposed to be equal unless the compile-time value \c N has a special
|
|
* value meaning that the runtime-value should be used. Depending on the context, this special
|
|
* value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for
|
|
* quantities that can be negative).
|
|
*
|
|
* It is the return-type of the function Eigen::fix<N>(int), and most of the time this is the only
|
|
* way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt.
|
|
* Indeed, in order to write generic code, it is the responsibility of the callee to properly convert
|
|
* it to either a true compile-time quantity (i.e. a FixedInt<N>), or to a runtime quantity (e.g., an Index)
|
|
* using the following generic helper:
|
|
* \code
|
|
* internal::cleanup_index_type<T>::type
|
|
* internal::cleanup_index_type<T,DynamicKey>::type
|
|
* \endcode
|
|
* where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations.
|
|
* \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values.
|
|
*
|
|
* For convenience, you can also extract the compile-time value \c N using the following helper:
|
|
* \code
|
|
* internal::get_fixed_value<T,DefaultVal>::value
|
|
* \endcode
|
|
* that will give you \c N if T equals VariableAndFixedInt<N>, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int).
|
|
*
|
|
* \sa fix<N>(int), class FixedInt
|
|
*/
|
|
template<int N> class VariableAndFixedInt
|
|
{
|
|
public:
|
|
static const int value = N;
|
|
operator int() const { return m_value; }
|
|
VariableAndFixedInt(int val) { m_value = val; }
|
|
protected:
|
|
int m_value;
|
|
};
|
|
|
|
template<typename T, int Default=Dynamic> struct get_fixed_value {
|
|
static const int value = Default;
|
|
};
|
|
|
|
template<int N,int Default> struct get_fixed_value<FixedInt<N>,Default> {
|
|
static const int value = N;
|
|
};
|
|
|
|
#if !EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
|
|
template<int N,int Default> struct get_fixed_value<FixedInt<N> (*)(),Default> {
|
|
static const int value = N;
|
|
};
|
|
#endif
|
|
|
|
template<int N,int Default> struct get_fixed_value<VariableAndFixedInt<N>,Default> {
|
|
static const int value = N ;
|
|
};
|
|
|
|
template<typename T, int N, int Default>
|
|
struct get_fixed_value<variable_if_dynamic<T,N>,Default> {
|
|
static const int value = N;
|
|
};
|
|
|
|
template<typename T> EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; }
|
|
#if !EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
|
|
template<int N> EIGEN_DEVICE_FUNC Index get_runtime_value(FixedInt<N> (*)()) { return N; }
|
|
#endif
|
|
|
|
// Cleanup integer/FixedInt/VariableAndFixedInt/etc types:
|
|
|
|
// By default, no cleanup:
|
|
template<typename T, int DynamicKey=Dynamic, typename EnableIf=void> struct cleanup_index_type { typedef T type; };
|
|
|
|
// Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index
|
|
template<typename T, int DynamicKey> struct cleanup_index_type<T,DynamicKey,typename internal::enable_if<internal::is_integral<T>::value>::type> { typedef Index type; };
|
|
|
|
#if !EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
|
|
// In c++98/c++11, fix<N> is a pointer to function that we better cleanup to a true FixedInt<N>:
|
|
template<int N, int DynamicKey> struct cleanup_index_type<FixedInt<N> (*)(), DynamicKey> { typedef FixedInt<N> type; };
|
|
#endif
|
|
|
|
// If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value:
|
|
template<int N, int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<N>, DynamicKey> { typedef FixedInt<N> type; };
|
|
// If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index):
|
|
template<int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<DynamicKey>, DynamicKey> { typedef Index type; };
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
template<int N, int DynamicKey> struct cleanup_index_type<std::integral_constant<int,N>, DynamicKey> { typedef FixedInt<N> type; };
|
|
#endif
|
|
|
|
} // end namespace internal
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
|
|
#if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
|
|
template<int N>
|
|
static const internal::FixedInt<N> fix{};
|
|
#else
|
|
template<int N>
|
|
inline internal::FixedInt<N> fix() { return internal::FixedInt<N>(); }
|
|
|
|
// The generic typename T is mandatory. Otherwise, a code like fix<N> could refer to either the function above or this next overload.
|
|
// This way a code like fix<N> can only refer to the previous function.
|
|
template<int N,typename T>
|
|
inline internal::VariableAndFixedInt<N> fix(T val) { return internal::VariableAndFixedInt<N>(internal::convert_index<int>(val)); }
|
|
#endif
|
|
|
|
#else // EIGEN_PARSED_BY_DOXYGEN
|
|
|
|
/** \var fix<N>()
|
|
* \ingroup Core_Module
|
|
*
|
|
* This \em identifier permits to construct an object embedding a compile-time integer \c N.
|
|
*
|
|
* \tparam N the compile-time integer value
|
|
*
|
|
* It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them:
|
|
* \code
|
|
* seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1]
|
|
* \endcode
|
|
*
|
|
* See also the function fix(int) to pass both a compile-time and runtime value.
|
|
*
|
|
* In c++14, it is implemented as:
|
|
* \code
|
|
* template<int N> static const internal::FixedInt<N> fix{};
|
|
* \endcode
|
|
* where internal::FixedInt<N> is an internal template class similar to
|
|
* <a href="http://en.cppreference.com/w/cpp/types/integral_constant">\c std::integral_constant </a><tt> <int,N> </tt>
|
|
* Here, \c fix<N> is thus an object of type \c internal::FixedInt<N>.
|
|
*
|
|
* In c++98/11, it is implemented as a function:
|
|
* \code
|
|
* template<int N> inline internal::FixedInt<N> fix();
|
|
* \endcode
|
|
* Here internal::FixedInt<N> is thus a pointer to function.
|
|
*
|
|
* If for some reason you want a true object in c++98 then you can write: \code fix<N>() \endcode which is also valid in c++14.
|
|
*
|
|
* \sa fix<N>(int), seq, seqN
|
|
*/
|
|
template<int N>
|
|
static const auto fix();
|
|
|
|
/** \fn fix<N>(int)
|
|
* \ingroup Core_Module
|
|
*
|
|
* This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val.
|
|
*
|
|
* \tparam N the compile-time integer value
|
|
* \param val the fallback runtime integer value
|
|
*
|
|
* This function is a more general version of the \ref fix identifier/function that can be used in template code
|
|
* where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers
|
|
* such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers
|
|
* (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val
|
|
* will be used as a fallback.
|
|
*
|
|
* A typical use case would be:
|
|
* \code
|
|
* template<typename Derived> void foo(const MatrixBase<Derived> &mat) {
|
|
* const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2;
|
|
* const int n = mat.rows()/2;
|
|
* ... mat( seqN(0,fix<N>(n) ) ...;
|
|
* }
|
|
* \endcode
|
|
* In this example, the function Eigen::seqN knows that the second argument is expected to be a size.
|
|
* If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n.
|
|
* Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as <tt> seqN(0,fix<N>) </tt>.
|
|
*
|
|
* \sa fix, seqN, class ArithmeticSequence
|
|
*/
|
|
template<int N>
|
|
static const auto fix(int val);
|
|
|
|
#endif // EIGEN_PARSED_BY_DOXYGEN
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_INTEGRAL_CONSTANT_H
|